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1. Introduction

Linear-dilaton backgrounds were recognized long ago as string vacua with rich properties

and diverse applications [1, 2]. An important step was taken in [3], where the connection

between the linear-dilaton exact worldsheet theory and the solitonic target-space objects

known as NS5-branes [4] was established. Distributions of NS5-branes in their transverse
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space generate exact string backgrounds with half supersymmetry broken. Situations where

the underlying σ model can be identified with a known exact conformal field theory (CFT)

are especially desirable but nevertheless rare. When k parallel NS5-branes are located at the

same point, their transverse near-horizon geometry is the target space of the Rφ × SU(2)k
supersymmetric Wess-Zumino-Witten (WZW) model – Rφ denotes the radial direction

that supports the linear dilaton [3]. This background exhibits the N = 4 superconformal

algebra and its string spectrum was analyzed in [5]. The only other known case resulting

into an exact CFT description is when the NS5 branes are uniformly distributed on the

circumference of a circle [6]. This is also a remarkable theory since the geometry, two-

form and dilaton backgrounds turn out [6] to be T-dual to those of the SU(2)/U(1) ×
SL(2,R)/U(1) product of conformal cosets.

Over the recent years, NS5-brane distributions attracted further attention in the advent

of holography. In this framework, it is conjectured that string theory on linear-dilaton-like

vacua is the holographic dual of little string theories (LSTs) [7]. The latter are non-

gravitational theories that capture the dynamics of the worldvolume modes of NS5-branes

in some appropriate decoupling limit.

An important consequence of the above holographic duality is the correspondence

between vertex operators of the string theory on the asymptotic linear-dilaton background

and deformations of the dual string theory [8, 9]. Hence, starting from a specific NS5-brane

distribution, one can trigger perturbations by giving vacuum expectation values (VEVs)

to appropriate scalar fields defined on their worldvolumes. Such perturbations amount to

displacements of the NS5-branes in their four-dimensional transverse space, and their effect

on the underlying two-dimensional worldsheet theory can be immediately uncovered using

the holographic dictionary.

The present work aims primarily at demonstrating the validity of the above holographic

dictionary in situations where the effect of the perturbations on the locus of the NS5-branes

can be independently controlled at the level of the worldsheet theory. This is possible

whenever the two-dimensional σ model that describes the string dynamics is an exact and

solvable CFT. The case that we will be dealing with falls in this class and provides the first

example where the little string holographic duality is checked with accuracy.

Exact conformal σ models serve to generate continuous families of exact string vacua

using e.g. integrable marginal worldsheet operators. The expected interplay between per-

turbed worldsheet σ models and deformed target-space distributions of source branes has

been analyzed in several instances [10]–[15] based on a general criterion established in [16]

for current-current perturbations. However, the first example of a clear relationship be-

tween a marginal worldsheet operator and a geometrical deformation of the NS5-brane

density distribution has been worked out in [17]. There, it was shown that a continu-

ous deformation of the circular NS5-brane distribution into an elliptic one was driven by a

marginal perturbation of the SU(2)/U(1)×SL(2,R)/U(1) worldsheet σ model. The bonus of

this analysis was to demonstrate that the compact parafermions of the SU(2)/U(1) theory

could be appropriately dressed by non-compact vertex operators of the SL(2,R)/U(1) coset

and form a novel kind of operator with anomalous dimension two which is non-factorizable

in terms of holomorphic and anti-holomorphic currents. This marginal operator was re-
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sponsible for the circular distribution of NS5-branes being deformed into an elliptical one.

The deformation of the circle into an ellipsis may be thought of as one particular mode

among an infinitude consisting of battered circles with n ∈ N bumps, distributed with Zn

symmetry around the original circle. Correspondingly, one may expect other combinations

of compact parafermions with non-compact or even compact dressings to provide new

dimension-two operators, each one triggering a mode with a given number of bumps in the

associated NS5-brane distribution. Another motivation for our article is to demonstrate

this statement for the supersymmetric SU(2)/U(1)× SL(2,R)/U(1) coset model. Not only

this achievement is interesting per se as an original conformal-field-theoretical result, but

it also establishes one of the sides of the sought after holographic correspondence that we

advertised previously.

The strategy we will follow is:

• First, we analyze in detail the spectrum of conformal operators of the unperturbed

theory. The latter is the near-horizon background created by k parallel NS5-branes

uniformly distributed on a circle which, after T-duality, is the product of two super-

symmetric Kazama-Suzuki cosets, SU(2)/U(1)×SL(2,R)/U(1), as mentioned above.

These models have chiral and anti-chiral parafermions which are not currents since

their conformal weights are smaller than one in the case of SU(2)/U(1) or greater than

one in the case of SL(2,R)/U(1). Nonetheless, compact parafermions can be success-

fully combined with non-compact and compact primaries to deliver dimension-two

operators. For our analysis their necessary semiclassical expressions can be worked

out using group-theory methods.

• Next, we move to the LST side and consider a class of worldvolume operators whose

VEVs describe displacements of the NS5-branes. These operators must correspond

to marginal worldsheet operators preserving the original N = 4 superconformal sym-

metry, like any transverse-space distribution of NS5-branes. Using the holographic

dictionary, we can indeed associate to those LST operators the marginal operators of

the SU(2)/U(1)×SL(2,R)/U(1), built previously as compact parafermions appropri-

ately dressed with conformal primaries from the non-compact as well as the compact

coset in general.

• Finally, we can independently check that the worldsheet marginal operators con-

structed by following the holographic recipe, do trigger the expected geometric dis-

placements. Put differently, we must reinterpret the effect of these operators on the

N = 1 supersymmetric σ-model background fields and check that these perturbed

background fields (metric, spin connection, curvature two-form, antisymmetric tensor

and dilaton) are indeed generated by a distribution of NS5-branes in conformity with

the distribution predicted by the original LST pattern. To perform this comparison

a delicate interplay between CFT operators and their semiclassical expressions takes

place.

These three steps are taken in sections 2, 3 and 4, respectively. Put together, they demon-

strate the validity of the holographic dictionary and establish the correspondence among
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marginal operators of the supersymmetric SU(2)/U(1)×SL(2,R)/U(1) model and n-bump

deformations of the circular distribution of NS5-branes. The main text is followed by sev-

eral appendices, which provide the reader with all necessary computational details: com-

pact and non-compact parafermionic fields and their operator product expansions (OPEs),

N = 4 and N = 2 extended superconformal algebras, and finally general properties of the

n-bump-deformed geometries (coframes, spin connections and curvature two-forms).

2. Neveu-Schwarz five-branes and exact conformal field theories

In this section we first recall a few facts on the exact CFT description of the NS5-branes

on a point or distributed uniformly over the circumference of a circle, which concerns,

respectively, the SU(2) × Rφ or SU(2)/U(1) × SL(2,R)/U(1) theories and the associated

operators. Next we review material on the classical parafermions relevant for our paper and

develop the semiclassical correspondence of CFT primary operators to explicit expressions

in terms of target-space fields, which is crucial for the comparisons that we will perform in

section 4.

2.1 Neveu-Schwarz five-branes on a point and on a circle

A distribution of a large number k of parallel NS5-branes with density ρ(x) in the transverse

R
4 space is described, to leading order in α′, as a supergravity background specified by a

ten-dimensional metric of the form

ds2 = ηµνdx
µdxν +H(x)δijdx

idxj , (2.1)

where ηµν is the Minkowski metric on the flat worldvolume of the NS5-branes parameterized

by xµ, µ = 0, 1, . . . , 5 and x =
{

xi, i = 6, 7, 8, 9
}

labels the space R
4 transverse to the NS5-

branes. The geometry is accompanied by a three-form NS-NS field

Hijk = ǫ l
ijk ∂lH , (2.2)

where the indices are lowered and raised with the flat metric of R
4, and by a dilaton field

given by

e2(Φ−Φ0) = H , (2.3)

where Φ0 is related to the asymptotic string coupling gs = exp 2Φ0 far from the NS5-branes.

In general, the above background fields provide a solution of the supergravity equations

of motion, which preserves one half of the maximum supersymmetry, if the function H(x)

is harmonic in R
4. The function H(x) is specified in terms of the density as

H(x) = 1 + α′k

∫

R4

d4x′
ρ(x′)

|x − x′|2 . (2.4)

Although it is believed that the above background can be promoted to a string solution

valid to all orders in α′ for an arbitrary distribution of NS5-branes, the underlying exact

conformal field theory is not known in general. There are, however, two special configu-

rations whose near-horizon limit, corresponding to the harmonic function (2.4) with the 1
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removed, admit a CFT description. The first is the case of NS5-branes put at the same

point x = 0 [3]. The corresponding harmonic function is H(x) = k/r2, with r being the

radial distance in R
4 and after a reparameterization r =

√
α′k exp (Φ0 + φ/

√
α′k), the metric

and the three-form become

ds2 = ds2
(

E(1,5)
)

+ dφ2 + α′k dΩ2
3 , H = 2VolS3 , (2.5)

where dΩ2
3 is the line element of the transverse S3 and VolS3 is its volume form. The

dilaton is linear in φ

Φ = −q
2
φ , q =

2√
α′k

. (2.6)

The three-sphere of radius
√
α′k along with the NS-NS flux can be described by an

SU(2) Wess-Zumino-Witten (WZW) model at level k, while the linear dilaton corresponds

to a free boson with background charge q. Hence, the near-horizon region of a system of

parallel and coincident NS5-branes admits an exact conformal field theory description in

terms of the Callan-Harvey-Strominger (CHS) background

R
5,1 × Rφ × SU(2)k . (2.7)

The supersymmetric SU(2)k WZW model consists of a bosonic SU(2) WZW model at level

k − 2, whose affine primaries Φsu
j;m,m̄ have conformal weight

h =
j(j + 1)

k
, (2.8)

and three free fermions ψa, a = 1, 2, 3 transforming in the adjoint representation of SU(2).

The conformal primaries of Rφ are eaφ and their dimension is

h = −1

2
a(a+ q) . (2.9)

We have also the worldsheet superpartners of xµ and φ given by free fermions ψµ and ψφ .

The background Rφ× SU(2)k supports the small N = 4 superconformal algebra [5] and in

appendix A we present for reference the relevant details. The central charges of the three

CFT factors are

c5,1 = 6 +
6

2
,

cφ = 1 +
3α′

2
q2 +

1

2
,

ck =
3(k − 2)

k
+

3

2
.

(2.10)

They add up to c = 15, as they should in order to have a vanishing total conformal anomaly.

In the rest of this paper α′ is set to 2.

The conformal field theory background (2.7) suffers from a singularity at φ = −∞
where the string coupling diverges. Perturbation theory breaks down in this region and

hence (2.7) is a good description of the physics only far from the NS5-branes. The strong-

coupling singularity is due to the fact that the NS5-branes are coincident since a single
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NS5-brane does not develop the “throat” geometry that results in the linear dilaton. Hence,

separating the NS5-branes should cure the strong-coupling singularity. At the same time,

however, we would like to keep the benefits of an exact conformal field theory description.

The only known configuration that achieves that, is a continuous and uniform distribution

of NS5-branes on the circumference of a circle found in [6], where it was shown that in

this case the non-trivial part of the CHS background (2.7) is replaced, after an appropriate

T-duality, by the product of two Kazama-Suzuki coset models

SU(2)k

U(1)
× SL(2,R)k

U(1)
, (2.11)

orbifolded under a Zk discrete symmetry. Actually, as we will see soon, (2.11) arises as an

exactly marginal deformation of the CHS background.

2.2 Vertex operators for the coset theories

The first factor in (2.11) is the N = 2 minimal model at level k. We will denote its NS-NS

sector primaries by V su
j;m,m̄. Their conformal weight and R-charge in the holomorphic sector

are

h =
j(j + 1) −m2

k
, QR = −2m

k
. (2.12)

Similar formulas apply for the antiholomorphic sector with m replaced by m̄. A very useful

representation of the minimal model is in terms of a bosonic coset SU(2)k−2/U(1), i.e. the

compact parafermion theory, and a compact canonically normalized free boson P [18]. The

latter bosonizes the two free fermions that, along with the bosonic SU(2)k−2/U(1) coset,

realize the supersymmetric SU(2)k/U(1) Kazama-Suzuki model. The operator V su
j;m,m̄ is

decomposed as

V su
j;m,m̄ = ψj;m,m̄ exp

(

i
2m

√

k(k − 2)
PL + i

2m̄
√

k(k − 2)
PR

)

, (2.13)

where ψj;m,m̄ are primaries of the parafermion theory [19] at level k − 2 and PL(z), PR(z̄)

are the holomorphic and antiholomorphic parts of P . The conformal dimension of ψj;m,m̄ is

h =
j(j + 1)

k
− m2

k − 2
(2.14)

and upon adding to it 2m2

k(k−2) , i.e. the conformal dimension of the exponential, we obtain

the superconformal weight in (2.12). An interesting property of the parafermion theory

that we will use is the equivalence of primaries [19]

ψj;m,m̄ ≡ ψk−2
2

−j;− k−2
2

+m,− k−2
2

+m̄ . (2.15)

This equivalence relates primaries with −j 6 m 6 j originating from SU(2)k−2 affine pri-

maries, to primaries with j 6 m 6 k − 2 − j. For the latter the conformal dimension is

given by (2.14) with the term m− j added on the right-hand side.
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The second factor in (2.11) is the Kazama-Suzuki model based on the SL(2,R)/U(1)

non-compact coset. Its NS-NS primaries V sl
j;m,m̄ have conformal weight and R-charge given

by

h =
−j(j + 1) +m2

k
, QR =

2m

k
. (2.16)

As for the N = 2 minimal model, there is a useful representation of this Kazama-Suzuki

model in terms of the non-compact parafermion theory SL(2,R)k+2/U(1) [20] and a free

scalar Q. The vertex operators V sl
j;m,m̄ decompose as

V sl
j;m,m̄ = πj;m,m̄ exp

(

i
2m

√

k(k + 2)
QL + i

2m̄
√

k(k + 2)
QR

)

, (2.17)

where πj;m,m̄ are primaries of the non-compact parafermion theory at level k+2, and QL(z)

and QR(z̄) are the holomorphic and antiholomorphic parts of Q. The conformal dimensions

of πj;m,m̄ read:

h = −j(j + 1)

k
+

m2

k + 2
(2.18)

and, along with the contribution 2m2

k(k+2) of the exponential, add up to the superconformal

weight given in eq. (2.16). As in the compact case, there is an equivalence between non-

compact parafermion primaries

πj;m,m̄ = π k−2
2

−j; k+2
2

+m, k+2
2

+m̄ . (2.19)

2.3 Semiclassical geometry and parafermions

The coset SU(2)k−2/U(1) has natural chirally and anti-chirally conserved objects ψ,ψ†

and ψ̄, ψ̄† respectively, known as parafermions, with conformal dimensions [19]

h = 1 − 1

k − 2
, h̄ = 1 − 1

k − 2
. (2.20)

The parafermion theory, being a coset CFT, it admits a description as a gauged WZW

model [21]. Semiclassically, the latter yields a σ model with a bell-like target-space geom-

etry [22] and a varying dilaton [23]

ds2SU(2)/U(1) = k
(

dθ2 + tan2 θ dϕ2
)

, e−2Φ = cos2 θ , (2.21)

with θ ∈ [0, π], ϕ ∈ [0, 2π) and ϕ ≡ ϕ+ 2π
k . In the standard parafermion theory the compact

scalar ϕ has period 2π but here we have changed its period to 2π/k so that it corresponds

to the Zk orbifold of the original parafermion theory. In terms of the σ-model variables,

the classical parafermion fields read [22]:

ψ =
(

∂θ − i tan θ ∂ϕ
)

e−i(ϕ+φ1) , ψ† =
(

∂θ + i tan θ ∂ϕ
)

ei(ϕ+φ1) (2.22)

and

ψ̄ =
(

∂̄θ − i tan θ ∂̄ϕ
)

e−i(ϕ−φ1) , ψ̄† =
(

∂̄θ + i tan θ ∂̄ϕ
)

ei(ϕ−φ1) . (2.23)
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The overall normalization is chosen such that the OPE of the corresponding quantum

parafermions in appendix B agree with the Poisson brackets of their above classical coun-

terparts. The parafermions have their origin in the currents J± and J̄± of the SU(2)k
theory. In the gauged theory they are dressed with gauge fields that render them gauge-

invariant. That explains also the presence of the phase φ1 which is a non-local function of

the variables θ and ϕ. Its explicit expression is not needed here (see, for instance, [17]),

but it is necessary for ensuring on-shell conservation of the parafermions

∂̄ψ = ∂̄ψ† = 0 , ∂ψ̄ = ∂ψ̄† = 0 . (2.24)

The non-local phase φ1 should drop out in expressions having a clear local field theory

interpetation, for instance those appearing in the two-dimensional σ model actions as we

shall see.

The non-compact coset SL(2,R)k+2/U(1) has also natural chirally and anti-chirally

conserved objects π, π† and π̄, π̄† respectively, known as non-compact parafermions, with

conformal dimensions [20]

h = 1 +
1

k + 2
, h̄ = 1 +

1

k + 2
. (2.25)

The non-compact-parafermion theory admits a semiclassical description in terms of a σ

model with either a cigar-shaped or a trumpet-shaped geometry along with a non-trivial

dilaton [23]. We will consider the trumpet picture, specified by

ds2SL(2,R)/U(1) = k
(

dρ2 + coth2 ρ dω2
)

, e−2Φ = sinh2 ρ , (2.26)

with coordinates ρ ∈ [0,∞), ω ∈ [0, 2π) and ω ≡ ω + 2π
k . This metric is singular near

ρ = 0 but its T-dual, namely the cigar, is well-defined and provides an equivalent (up to

T-duality) semiclassical description of the non-compact parafermion theory. The classical

non-compact parafermion fields are

π =
(

∂ρ+ i coth ρ ∂ω
)

ei(ω+φ2) , π† =
(

∂ρ− i coth ρ ∂ω
)

e−i(ω+φ2) (2.27)

and

π̄ =
(

∂̄ρ+ i coth ρ ∂̄ω
)

ei(ω−φ2) , π̄† =
(

∂̄ρ− i coth ρ ∂̄ω
)

e−i(ω−φ2) . (2.28)

The phase φ2 is non-local and ensures on-shell conservation laws similar to those of the

compact case, eq. (2.24).

The full conformal field theory (2.11) corresponds semiclassically to a σ model with

metric and dilaton given by

ds2 = k
(

dθ2 + tan2 θ dϕ2 + dρ2 + coth2 ρ dω2
)

, e−2Φ = cos2 θ sinh2 ρ . (2.29)

The relation of this background to that of NS5-branes distributed uniformly over a circle,

follows explicitly by first changing coordinates as ϕ = τ and ω = τ+ψ and then performing

a T-duality transformation with respect to τ [6]. The focal point of this paper will be the

interplay between the description of deformations of the circular distribution of NS5-branes

in the σ-model language and the corresponding operators in the exact conformal field theory

description. For that, an important ingredient will be the semiclassical expressions of the

conformal primary fields of the theory (2.11), to the description of which we now turn.
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2.4 Semiclassical description of conformal primaries

Conformal primaries in (2.11) are products of primaries of each factor. First we consider

the semiclassical description of the primaries of the WZW model for the non-compact group

SL(2,R) from which the semiclassical primaries for the non-compact coset SL(2,R)/U(1)

follow by rendering them gauge-invariant. These primaries are built up using the group

element1
(

g++ g+−
g−+ g−−

)

=

(

cosh ρ ei(θL+θR)/2 sinh ρ e−i(θL−θR)/2

sinh ρ ei(θL−θR)/2 cosh ρ e−i(θL+θR)/2

)

(2.30)

and they transform in the
(

1
2 ,

1
2

)

representation of SL(2,R)L×SL(2,R)R with U(1) charges
(

±1
2 ,±1

2

)

, in all four combinations, in accordance with their index. The explicit transfor-

mation rules referring to SL(2,R)L are

δ0g±± = ∓ i

2
g±± , δ0g±∓ = ∓ i

2
g±∓ ,

δ−g++ = ig−+ , δ+g++ = 0 ,

δ−g+− = ig−− , δ+g+− = 0 ,

δ−g−+ = 0 , δ+g−+ = −ig++ ,

δ−g−− = 0 , δ+g−− = −ig+− ,

(2.31)

and act only on the first index of the group elements. The similar transformations with

respect to SL(2,R)R acting on the second index of the group elements, may have the same

or the opposite signs as compared to those in (2.31) since the two transformations are

unrelated. We choose the opposite sign since in the non-compact coset model we will

gauge the vectorial U(1) subgroup instead of the axial, as we will shortly discuss.

Being finite-dimensional, the above is not a unitary representation of SL(2,R)L ×
SL(2,R)R, but we may construct other irreducible representations that are unitary by

appropriate multiplications and inversions of the above group elements. In particular, for

the positive and negative discrete series, for given spin j, m takes the values ±(j + 1, j +

2, . . . ). In order for the semiclassical description to remain valid, we will assume j ≪ k.

Then it is obvious that the following expressions for the semiclassical primaries are unique

πj;j+1,j+1 =
1

g
2(j+1)
−−

, πj;−j−1,−j−1 =
1

g
2(j+1)
++

,

πj;j+1,−j−1 =
1

g
2(j+1)
−+

, πj;−j−1,j+1 =
1

g
2(j+1)
+−

,
(2.32)

since they represent highest- or lowest-weight states. The other members of the representa-

tion are obtained by transforming appropriately the states in (2.32) with δ± using (2.31).

It is crucial for the precise comparison that we perform in the next section to have an

agreement between normalization factors of various operators in the semiclassical and the

1In our presentation we follow and extend the brief discussion in [17]. For an extensive overview and

general expressions see [24] and also [25], where some of the primaries have been used in relation to the

physics of the two-dimensional black hole.
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exact CFT approaches. Hence we will normalize them according to (B.17) as

πj;m±1,m̄ =
1

m± (j + 1)
δ±πj;m,m̄ , (2.33)

for the left as well as for the right SU(2) transformations. Here we present only the

expressions one needs in this paper

πj;j+2,j+1 = i
g+−

g2j+3
−−

, πj;j+1,j+2 = −i g−+

g2j+3
−−

, πj;j+2,j+2 =
2(j + 1)g+−g−+ − 1

2(j + 1)g2j+4
−−

. (2.34)

For the parafermionic coset theory, corresponding to the gauging of SL(2,R) with

respect to the vector U(1) subgroup described semiclassicaly in terms of (2.26), we have

the transformation δθL = −ǫ and δθR = ǫ, so that the appropriate unitary gauge fixing

is θL = θR = ω.2 The elements g±± are gauge-invariant, whereas g±∓ are not. Those

become gauge-invariant provided they are multiplied by the non-local phase factor φ2 that

appears in the non-compact parafermions. The gauge-invariant group elements that should

be used in (2.32) and (2.34) to construct the expressions for the semiclassical primaries of

the parafermionic theory are thus

g±±|g.−inv. = cosh ρ e±iω , g±∓|g.−inv. = sinh ρ e±iφ2 . (2.35)

Form now on we drop the indicated index, keeping in mind that the associated semiclassical

primaries correspond to the parafermionic coset theory. In the semiclassical correspondence

that we will establish we will take into account the leading 1/k-correction to their classical

dimension which is zero. Therefore the dimension of the above semiclassical primaries of

the parafermionic theory (2.18), becomes

hj;j+ℓ = hj;−j−ℓ =
(2ℓ− 1)j + ℓ2

k
+ O(1/k2) , (2.36)

accordingly for the left or the right factor and where ℓ = 1, 2 in our case.

For the case of the semiclassical primaries of the compact coset SU(2)/U(1) the proce-

dure is quite similar. We will be brief since the expressions we need in this paper are fewer

than those needed from the non-compact coset. The semiclassical SU(2) compact primaries

are built up using the group element (we will use tildes so that there is no confusion with

the SL(2,R) group element we used above)

(

g̃++ g̃+−
g̃−+ g̃−−

)

=

(

cos θ ei(θL+θR)/2 sin θ e−i(θL−θR)/2

− sin θ ei(θL−θR)/2 cos θ e−i(θL+θR)/2

)

. (2.37)

2The vector transformation is consistent with the sign difference between the left and right SU(2) trans-

formations, mentioned below (2.31). Indeed, since i(θL+θR) = ln(g++/g−−) and i(θL−θR) = ln(g−+/g+−),

we can easily see that for the left (right) transformations with the U(1) subgroup one obtains δθR = ǫL and

δθL = 0 (δθR = 0 and δθL = ǫR). Since by definition a vector transformation has ǫL = −ǫR, we see that

this is indeed consistent with the transformations δθL = −ǫ = −δθR.
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These transform similarly to (2.31) and form the
(

1
2 ,

1
2

)

unitary representation of SU(2)L×
SU(2)R with U(1) charges

(

±1
2 ,±1

2

)

, in all four combinations and in accordance with their

index. In the present paper we will need only the expressions for

ψj;j,j = g̃2j
++ , ψj;−j,−j = g̃2j

−− , ψj;j,−j = g̃2j
+− , ψj;−j,j = g̃2j

−+ , (2.38)

which, for fixed j, are highest- or lowest-weight representations for the left and right SU(2)

factors. For the parafermionic SU(2)/U(1) coset theory with axial gauging, corresponding

to the background (2.21), we have the transformation δθL = ǫ and δθR = ǫ, so that the

appropriate unitary gauge fixing is θL = −θR = ϕ. The elements g±∓ are gauge-invariant,

whereas g±± are not. As before, it turns out that they become gauge-invariant when they

are multiplied by the non-local phase factor that appears in the compact parafermions.

Hence

g̃±∓|g.−inv. = ± sin θ e∓iϕ , g̃±±|g.−inv. = cos θ e∓iφ1 . (2.39)

The dimensions of the above semiclassical primaries (2.14) in the parafermionic theory, up

to the order we are interested in, are

hj;j = hj;−j =
j

k
+ O

(

1/k2
)

, (2.40)

accordingly for the left or the right factor.

3. Holographic approach to NS5-brane deformations

In this section, after reviewing the procedure by which the theory is deformed based on the

holographic conjecture, we compute explicitly the operators corresponding to our cases.

Subsequently we find their semiclassical expressions in terms of target-space fields. Then

we specialize our findings to some simple cases like the deformation of a point distribution

into a circular one and that of a circular into one of a different radius. We then pay

particular attention to the deformation of a circular into a an elliptical distribution which

captures most of the essential points of our construction. Finally, we apply our results to

the case of a general distribution which, compared to the elliptical one, presents some new

features such as the appearance of composite operators.

3.1 Holographic dictionary: generalities

An interesting feature of both (2.7) and (2.11) is that asymptotically (i.e. large ρ for (2.11)

in terms of its σ-model description (2.29)), they are linear dilaton space-times. It has been

proposed that string theory on such space-times provides a holographic description of the

mysterious non-gravitational string theory, known as little string theory, that lives on the

worldvolume of NS5-branes in the decoupling limit where the asymptotic string coupling is

taken to zero [7]. This correspondence is very similar to the usual AdS/CFT duality since

it relates the decoupled theory on a stack of branes with the supergravity or string theory

on the near-horizon geometry induced by the branes [26 – 28].

The spectrum of states in backgrounds that asymptote to a linear dilaton falls into three

classes with distinct physical significance. For instance in the CHS background, there are
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delta-function normalizable states whose vertex operators behave for large φ as e(−
q

2
+iλ)φ

with real λ. They describe incoming and outcoming waves carrying momentum λ along

the holographic direction φ. Besides these states, the theory contains also normalizable

states that decay rapidly as φ → ∞. Hence, they are supported in the strong-coupling

region of large negative φ and they can be thought of as bound states associated with the

NS5-branes. Finally, there exist non-normalizable states whose wavefunctions diverge at

the weakly-coupled boundary φ→ ∞.

The holographic duality conjectures a correspondence between vertex operators of the

string theory on the asymptotic linear dilaton background and deformations of the dual

little string theory [8, 9]. More precisely, adding to the worldsheet Lagrangian a non-

normalizable operator Vnon−nor., corresponds to perturbing the Lagrangian of the dual

theory with an appropriate dual gauge-invariant operator WV . If, instead, we add to the

worldsheet theory the normalizable version Vnor. of the same vertex operator, the dual

theory does not change but the dual operator WV acquires a VEV 〈WV 〉 [29]. Since

the geometry of the NS5-branes and their deformations are encoded in the VEVs of the

adjoint scalar fields living on their worldvolume, we see that by employing the holographic

correspondence we can uncover the associated deformations of the underlying (dual) CFT.

In the little string theory side, a basic class of operators we would like to consider and

which encode all the information on the arrangement of the NS5-branes in their transverse

R
4 is given by chiral and gauge-invariant combinations of the adjoint scalar fields Φi, i =

6, 7, 8, 9. The eigenvalues of these fields parameterize the positions of the NS5-branes in

the four transverse directions, i.e. the moduli space of vacua of the little string theory. The

operators of interest are tr
(

Φi1Φi2 · · ·Φi2j+2
)

with 2j = 0, 1, . . . , (k−2) and where we keep

only the symmetric and traceless components in the indices (i1, i2, . . . , i2j+2) so that the

operator is in a short representation of the supersymmetry algebra.3

The dictionary established in [8, 9] is

tr
(

Φi1Φi2 · · ·Φi2j+2
)

↔ e−ϕ−ϕ̄
(

ψψ̄Φsu
j

)

j+1;m,m̄
e−q(j+1)φ , (3.1)

where the right-hand side refers to operators in the CHS background. We use the normal-

izable version of the CFT operators since we are interested in describing VEVs in the little

string theory. We denoted by ϕ, ϕ̄ the bosonized superconformal ghosts (which should not

be confused with the compact coordinate of the bell geometry (2.21)), Φsu
j is an affine

primary of the bosonic SU(2)k−2 WZW model and the notation
(

ψψ̄Φsu
j

)

j+1;m,m̄
means

that we should couple the fermions ψa, a = 3,± in the adjoint of SU(2) with the bosonic

primary in a primary of total spin j + 1 and
(

J tot
3 , J̄ tot

3

)

= (m, m̄). We refer the reader to

the appendix A for further details on the notation. The values of m and m̄ are determined

by the indices appearing at the left.

3There is also a subtlety pertaining to the precise definition of the trace. In principle, one should consider

the usual single-trace along with multi-trace operators. However, for j ≪ k, which will be the regime of

our interest, the multi-trace contributions will be negligible and it will suffice to consider the single-trace

ones [8, 9].
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When the operators tr
(

Φi1Φi2 · · ·Φi2j+2
)

acquire non-zero VEVs, the Lagrangian of

the dual worldsheet conformal field theory is perturbed as

L = L0 +
(

λj;m,m̄G− 1
2
Ḡ− 1

2

(

ψψ̄Φsu
j

)

j+1;m,m̄
e−q(j+1)φ + c.c.

)

, (3.2)

where we have omitted the bosonized ghosts since we will be working in the 0-picture.

These worldsheet deformations are marginal since
(

ψψ̄Φsu
j

)

j+1;m,m̄
e−q(j+1)φ has confor-

mal weights (h, h̄) = (1/2, 1/2). Furthermore, they should leave unbroken the N = 4

superconformal symmetry of the original worldsheet theory since any configuration of par-

allel NS5-branes with arbitrary transverse positions preserves one-half of the maximum

space-time supersymmetry. We check that N = 4 is indeed preserved in appendix A.

The couplings λj;m,m̄ are specified in terms of the VEVs of the LST operators while the

supersymmetry generators G− 1
2

and Ḡ− 1
2

correspond to the supercurrent G defined in ap-

pendix A. Notice that the perturbations we add in the worldsheet theory dominate at the

region of strong coupling φ→ −∞ and provide a worldsheet potential that regularizes the

strong-coupling singularity.

We will be interested in planar configurations of NS5-branes, i.e. distributions on the

transverse plane x8 − x9. It is very convenient then, following [8, 9], to use a parameteri-

zation of the moduli space in terms of two complex variables that span the two orthogonal

hyperplanes transverse to the NS5-branes:

A ≡ Φ6 + iΦ7 , B ≡ Φ8 + iΦ9 . (3.3)

Embedding the rotational SO(2)A×SO(2)B of the A and B planes in the SU(2)L×SU(2)R
symmetry of the CHS background so that SO(2)A is generated by J tot

3 − J̄ tot
3 and SO(2)B

is generated by J tot
3 + J̄ tot

3 , yields the following charge assignments

mA =
1

2
, m̄A = −1

2
, mB =

1

2
, m̄B =

1

2
. (3.4)

Combining those with the general relation (3.1) leads to the following correspondences

tr
(

AlB2j+2−l
)

↔ e−ϕ−ϕ̄
(

ψψ̄Φsu
j

)

j+1;j+1,j+1−l e
−q(j+1)φ (3.5)

and

tr
(

Al(B∗)2j+2−l
)

↔ e−ϕ−ϕ̄
(

ψψ̄Φsu
j

)

j+1;−j−1+l,−j−1
e−q(j+1)φ . (3.6)

We set 〈A〉 = 0 since we will study NS5-branes distributed on the B plane and fixed at

x6 = x7 = 0. Their positions are parameterized by k complex numbers bn, n = 1, 2, . . . , k

〈B〉 = diag (b1, b2, . . . , bk) ,

k
∑

n=1

bn = 0 , (3.7)

where the condition on their sum ensures that the center of mass of the NS5-brane system

does not change in accordance with the fact that the corresponding U(1) degree of freedom
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is not part of the interacting LST. Since 〈A〉 = 0 only the operators with l = 0 from (3.5)

and (3.6) have non-vanishing VEVs. Hence, the holographic dictionary becomes

tr(B2j+2) ↔ e−ϕ−ϕ̄ψ+ψ̄+Φsu
j;j,je

−q(j+1)φ , (3.8)

since ψ+, ψ̄+ have
(

J tot
3 , J̄ tot

3

)

= (1, 1).

A different representation of these operators comes from the decomposition

Rφ × SU(2)k ≡ Rφ ×
(

U(1)k ×
SU(2)k

U(1)

)/

Zk . (3.9)

The infinite cylinder Rφ × U(1)k is parameterized by φ and Y with the latter defined as

J tot
3 =

i

q
∂Y . (3.10)

The N = 2 minimal model SU(2)k/U(1) can be described in terms of a Landau-Ginzburg

superfield χ with superpotential

W = χk . (3.11)

Then we can write

ψ+ψ̄+Φsu
j;j,je

−q(j+1)φ = χk−2(j+1)e−q(j+1)Φ , (3.12)

where Φ is a chiral superfield whose bottom component is φ − iY (and, as usual, we will

denote both of them by the same symbol from now on). The perturbed Lagrangian can be

written as

L = L0 +





∑

j

λj

∫

d2θχk−2(j+1)e−q(j+1)Φ + c.c.



 , (3.13)

where the couplings λj are specified in terms of the locations of the NS5-branes on the

B-plane: λj = 1
k

〈

tr
(

B2j+2
)〉

, with the proportionality factor 1/k being included so that

the coupling, for generic NS5-distributions, is appropriately normalized.

So far the discussion applies to a configuration of NS5-branes located at a point in

R
4, where the dual conformal field theory is (2.7), and (3.1) associates deformations of the

NS5-branes around the point with marginal operators in the CHS background. If, instead,

we are interested in deformations of the circular configuration of NS5-branes, which admits

an exact CFT description in terms of (2.11), we would like to associate VEVs of the chiral

operators tr(Φi1Φi2 · · ·Φi2j+2) with marginal operators in (2.11). A way to find the latter is

to consider (2.11) as a deformation of Rφ× SU(2)k ≃ Rφ×
(

U(1)k × SU(2)k

U(1)

)/

Zk with the

cylinder Rφ×U(1)k being deformed to the SL(2,R)k/U(1) coset theory. For the operators

of interest the dictionary becomes

tr
(

B2j+2
)

↔ e−ϕ−ϕ̄V su
k
2
−j−1;− k

2
+j+1,− k

2
+j+1

V sl
j;j+1,j+1 . (3.14)

The corresponding worldsheet deformations are

L = L0 +
(

λjG− 1
2
Ḡ− 1

2
V su

k
2
−j−1;− k

2
+j+1,− k

2
+j+1

V sl
j;j+1,j+1 + c.c.

)

(3.15)
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and we can use (2.12) and (2.16) to check that they are indeed marginal.

A very interesting feature of the CFT operators in (3.8) and (3.14) is that they are

(chiral, chiral) [30]. One can verify, using the formulas in appendix A for (3.8) and in

appendix B and appendix C for (3.14), that

G+(z)ψ+ψ̄+Φsu
j;j,je

−q(j+1)φ(w, w̄) ∼ 0 ,

G+(z)V su
k
2
−j−1;− k

2
+j+1,− k

2
+j+1

V sl
j;j+1,j+1(w, w̄) ∼ 0 ,

(3.16)

and similarly for the antiholomorphic sector. Since the conformal weights of chiral operators

are fixed in terms of their R-charges, the corresponding worldsheet deformations are exactly

marginal. It is interesting to notice that spreading the NS5-branes on the A-plane while

keeping them at a fixed point in the B-plane, 〈B〉 = 0, corresponds holographically to

CFT operators that are (chiral, antichiral). Performing, instead, general (non-planar)

deformations of the NS5-branes where both 〈A〉 and 〈B〉 are non-zero triggers non-chiral

operators and therefore we lose exact marginality. Finally, we mention that interesting

properties of the chiral ring comprised by the operators (3.14) has been studied in [31, 32].

We proceed now with the computation of the worldsheet deformation in (3.15). The

supercurrent is G = 1√
2
(G++G−) and the action of the supercharge G− 1

2
on the operator is

captured by the simple pole of its OPE withG. As we mentioned above, the operators under

consideration are chiral and hence the singularities in their OPE withG will come only from

the action of G−. Using the decomposition of the supersymmetric coset primaries presented

in the previous subsection, the decomposition of the supercurrents from appendix B and

the parafermionic OPEs from appendix C, we can derive the following expressions

G−su(z)V su
k
2
−j−1;− k

2
+j+1,− k

2
+j+1

(w, w̄) ∼
√

2 α1

z − w
ψk

2
−j−1;− k

2
+j+2,− k

2
+j+1

× exp

(

i
2(j + 1)
√

k(k − 2)
PL + i

2(j + 1) − k
√

k(k − 2)
PR

)

(3.17)

and

G−sl(z)V sl
j;j+1,j+1(w, w̄) ∼

√
2 α2

z − w
πj;j+2,j+1

× exp

(

i
2(j + 1) − k
√

k(k + 2)
QL + i

2(j + 1)
√

k(k + 2)
QR

)

, (3.18)

with coefficients

α1 =
1√
k

(k − 2(j + 1)) , α2 =
2(j + 1)√

k
. (3.19)

Similar expressions hold for the actions of the antiholomorphic supercurrents.

The operator we add to the worldsheet Lagrangian comes from the action of the total

supercharges G− = G−su +G−sl and Ḡ− = Ḡ−su + Ḡ−sl on

V su
k
2
−j−1;− k

2
+j+1,− k

2
+j+1

V sl
j;j+1,j+1 := VsuVsl , (3.20)
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so that the result, after taking into account the factor 1/2 coming from the definitions of

G and Ḡ, schematically reads:

1

2

(

Vsl(G−suḠ−suVsu) + (G−suVsu)(Ḡ−slVsl) + (G−slVsl)(Ḡ−suVsu) + Vsu(G−slḠ−slVsl)
)

.

(3.21)

The total deformation of the Lagrangian is given by (3.21) multiplied by the couplings λj
and upon adding to it its complex conjugate so that the total expression is real. Explicitly,

the four operators in (3.21) read:

C
(1)
j,k α

2
1 ψk

2
−j−1;− k

2
+j+2,− k

2
+j+2 πj;j+1,j+1 e

i2(j+1)H , (3.22)

C
(2)
j,k α1α2 ψk

2
−j−1;− k

2
+j+2,− k

2
+j+1 πj;j+1,j+2 e

i2(j+1)HL+i(2(j+1)−k)HR , (3.23)

C
(3)
j,k α2α1 ψk

2
−j−1;− k

2
+j+1,− k

2
+j+2 πj;j+2,j+1 e

i(2(j+1)−k)HL+i2(j+1)HR , (3.24)

C
(4)
j,k α

2
2 ψk

2
−j−1;− k

2
+j+1,− k

2
+j+1 πj;j+2,j+2 e

i(2(j+1)−k)H , (3.25)

where H is a free boson defined as

H =
1√
k

( P√
k − 2

+
Q√
k + 2

)

. (3.26)

The C
(a)
j,k ’s are numbers that depend on the relative cocycles that we should include in

principle when bosonizing the fermions of the supersymmetric cosets. Their explicit form

is not necessary for our purposes, as we will be interested in the large-k limit in which we

can infer easily that these numbers for a = 1, 2, 4 can be taken to be 1 and for a = 3 to

be −1. This is essentially due to the fact that in the third term in (3.21) the order of the

exponentials corresponding to bosonized fermions for the compact and the non-compact

cosets has been interchanged compared to the third and fourth terms, whereas in (3.24)

the order has been restored.

The four operators above are partners under N = 1 worldsheet supersymmetry since

the deformations under consideration should leave space-time supersymmetry (and hence

worldsheet supersymmetry as well) unbroken. In the semiclassical limit k → ∞ and for j ≪
k, where we can think of them as deformations of the supersymmetric σ-model Lagrangian

with metric (2.29), the first one, eq. (3.22), would be a purely bosonic deformation. Indeed,

the contribution of the fermions, captured by the exponential involving the bosonized field

H, would be vanishing. Accordingly, the operators (3.23) and (3.24) correspond to 2-

fermion terms while (3.25) is a 4-fermion interaction term. In the next section we will

identify explicitly the semiclassical limit of these operators with the corresponding σ-model

deformations. An exception to this picture would be the case of j = (k − 2)/2 which is of

order k. This will be treated separately and we will show that it corresponds also to a nice

geometrically interpreted deformation.

3.2 Holographic dictionary: applications

It is time now to employ the holographic dictionary presented above in order to uncover

how changing the configuration of the NS5-branes affects the underlying conformal field

theory description.
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3.2.1 Point to circle

We start with a warm-up example taken from [8]. Let us distribute the NS5-branes sym-

metrically on a circle of radius r0 on the B-plane so that the eigenvalues bn take the form

bn = r0 e
2πi
k
n . (3.27)

Since tr〈Bl〉 = 0 for l < k we have

λj = µδj, k−2
2
, (3.28)

with µ ∼ rk0 . The value of the spin j = (k − 2)/2 is very special since the multi-trace

contributions, mentioned in footnote 3, are vanishing. The deformed worldsheet theory is

L = L0 +

(

µ

∫

d2θe−
1
q
Φ + c.c.

)

, (3.29)

which we recognize as the N = 2 Liouville theory. Combined with the N = 2 minimal

model and upon orbifolding with Zk, the theory thus obtained is equivalent to (2.11), which

indeed describes the near-horizon geometry of a circular configuration of NS5-branes [6].

3.2.2 Circle to circle

It is interesting to consider the operator with j = k−2
2 , but in the non-singular back-

ground (2.11). This operator should correspond to changes of the radius of the circular

distribution of the NS5-branes. If we change the radius from r0 to r0 + δ, we can ei-

ther add to the original CHS theory the j = k−2
2 operator with coefficients µ ∼ rk0 and

µ ∼ (r0 + δ)k respectively or, equivalently, deform the SL(2,R)/U(1) × SU(2)/U(1) with

the corresponding operator bearing a coefficient (r0 + δ)k − rk0 ≃ krk−1
0 δ.

The operator we use in this case in (3.15) reads:

V su
0;0,0V

sl
k
2
−1; k

2
, k
2

. (3.30)

Note that in this case the spin j is of the same order of magnitude as k, but as long as

we stay within the exact framework this does not present a problem. The correspondence

with the semiclassical expressions for the primaries will be done soon using the equivalence

relation (2.19).

Since for this value of j the coefficients α1 vanishes, the worldsheet Lagrangian changes

by

α2
2ψ0;0,0π k

2
−1; k

2
+1, k

2
+1 + c.c. = α2

2π k
2
−1; k

2
+1, k

2
+1 + c.c. , (3.31)

since ψ0;0,0 is the identity field. It can be verified using (2.18) that this operator is marginal.

Notice also that this is a purely bosonic deformation, since the bosonic field H relating

to the fermions doesn’t appear. This is an explicit example which indicates, among other

things, that the rôle of the various terms in (3.22)–(3.25) for low spin when j ≪ k, as

explained before the beginning of this subsection, could be completely different for high

spins having j ∼ k
2 .
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We would like now to find a semiclassical expression for the non-compact parafermionic

primary π k
2
−1; k

2
+1, k

2
+1. Notice that (B.17) yields

π(z)π k
2
−1; k

2
, k
2
(w, w̄) ∼ 1

(z − w)
2

k+2

π k
2
−1; k

2
+1, k

2
+1(w, w̄) , (3.32)

and similarly with π(z) replaced by π̄(z̄). In the semiclassical limit k → ∞ we can think

of π k
2
−1; k

2
+1, k

2
+1 as a composite field ππ̄π k

2
−1; k

2
, k
2

and their conformal dimensions match

only to leading order in 1/k, as it should be. Now, the equivalence between non-compact

parafermionic primaries can be used to replace π k
2
−1; k

2
, k
2

by π0;−1,−1. This is necessary

as the semiclassical limit of the expression for the primary π k
2
−1; k

2
, k
2

does not seem to be

well-defined since its spin is of order k. The punch-line is that for large k the leading

deformation of the worldsheet Lagrangian is through the operator

α2
2ππ̄π0;−1,−1 + c.c. ∼ α2

2

(

∂ρ∂̄ρ

cosh2 ρ
− ∂ω∂̄ω

sinh2 ρ

)

, (3.33)

where we have used the expressions (2.27), (2.28) and (2.32) for the semiclassical

SL(2,R)/U(1) parafermions and primaries.

The above operator is a deformation of the σ model (2.29) and more precisely only of

its SL(2,R)/U(1) part. The σ model of the latter is defined in (2.26) and appending (3.33)

to it with coefficient 1
kα

2
2kr

k−1
0 δ ∼ ǫk changes the above data to

ds2

k
=

(

1 +
ǫ

cosh2 ρ

)

dρ2 +

(

coth2 ρ− ǫ

sinh2 ρ

)

dω2, e−2Φ = sinh2 ρ . (3.34)

Now, a coordinate redefinition ρ → ρ − ǫ
2 tanh ρ brings the deformed metric back to its

original form but changes the profile of the dilaton as

e−2Φ = (1 − ǫ) sinh2 ρ . (3.35)

In the T-dual theory, i.e. the cigar, the dilaton takes the form

e−2Φ = (1 − ǫ) cosh2 ρ (3.36)

and its value at ρ = 0, i.e. at the tip of the cigar, is related to the radius of the circle on

which we put the NS5-branes [33]. Here we see explicitly that changing this radius has the

expected effect on the value of the dilaton at the tip.

3.2.3 Circle to ellipsis

Let us now consider a deformation of the circular configuration of NS5-branes to an ellipsis.

If the latter has radii r1 = r0(1 + ǫ) and r2 = r0(1 − ǫ) the positions of the NS5-branes

on the x8 − x9 plane are parameterized by 〈Φ8
n〉 = r1 cos(φn),

〈

Φ9
n

〉

= r2 sin(φn) with

φn = 2π
k n, n = 1, . . . , k. Since 〈B〉 =

〈

Φ8
〉

+ i
〈

Φ9
〉

we have

bn = r0

(

e
2πi
k
n + ǫe−

2πi
k
n
)

. (3.37)
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We can think of ǫ as controlling the deformation of a circle of radius r0 to an ellipsis. The

couplings λj are proportional to

〈tr(B)m〉 = krm
m
∑

l=0

(

m

l

)

ǫl(δ2l−m,k + δ2l,m + δ2l−m,−k) , (3.38)

where m = 2j+ 2 = 2, 3, . . . , k. Operators with a given j ∈ N result in corrections of order

ǫj+1. The leading deformation, which is of order ǫ, appears for m = 2 and therefore j = 0.

The corresponding operator we use in (3.15) is

V su
k
2
−1;− k

2
+1,− k

2
+1
V sl

0;1,1 (3.39)

and we can read from (3.22)–(3.25) the associated Lagrangian deformations:

C
(1)
0,k α

2
1 ψk

2
−1;− k

2
+2,− k

2
+2 π0;1,1 e

2iH ,

C
(2)
0,k α1α2 ψk

2
−1;− k

2
+2,− k

2
+1 π0;1,2 e

2iHL+i(2−k)HR ,

C
(3)
0,k α2α1 ψk

2
−1;− k

2
+1,− k

2
+2 π0;2,1 e

i(2−k)HL+2iHR ,

C
(4)
0,k α

2
2 ψk

2
−1;− k

2
+1,− k

2
+1 π0;2,2 e

i(2−k)H .

(3.40)

Recall also that we have to add to the operators above their complex conjugates.

We would like now to understand the semiclassical limit of these operators. We begin

with the exponentials and in the large-k limit we have the following correspondences

e2iH → 1 , h = h̄ ≃ 0 ,

e2iHL+i(2−k)HR → e−i(PR+QR) , h ≃ 0 , h̄ ≃ 1 − 4

k
,

ei(2−k)HL+i2HR → e−i(PL+QL) , h ≃ 1 − 4

k
, h̄ ≃ 0 ,

ei(2−k)H → e−i(P+Q) , h = h̄ ≃ 1 − 4

k
,

(3.41)

where we have indicated the semiclassical expressions explicitly in terms of the original

bosons P and Q, along with the conformal dimension up to order O(1/k) for which we are

interested in.

For the non-compact parafermionic primaries the semiclassical expressions can be read

from (2.32) and (2.34). For the compact parafermionic primaries similar formulas would

be ill-defined semiclassicaly (an analogous situation was encountered for the non-compact

primaries in the previous example) and we should find them indirectly. For instance the

dimension of ψk
2
−1;− k

2
+1,− k

2
+1 is 0 and indeed the parafermionic equivalence (2.15) relates

this operator to the identity ψ0;0,0. Furthermore, for ψk
2
−1;− k

2
+2,− k

2
+1 the dimension of the

left part is h = 1 − 1/(k − 2), i.e. the same as the one for the compact parafermions and

moreover, using the OPE (B.10) (for j = k/2− 1, m = −k/2 + 1 and remembering first to

shift in that expression k → k− 2) we conclude that it can be identified with that. Hence,

we have the exact identifications

ψk
2
−1;− k

2
+2,− k

2
+2 = ψψ̄ , ψk

2
−1;− k

2
+2,− k

2
+1 = ψ , ψk

2
−1;− k

2
+1,− k

2
+2 = ψ̄ . (3.42)
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We can now assemble everything using the expressions (2.22) and (2.23) for the

parafermion fields and (2.32) and (2.34) for the non-compact primaries. The deforming

operators in the semiclassical limit read:

k
1

g2
−−

ψψ̄ ,

− 2i

g3
−−

(

g−+ ψ e−i(PR+QR) + g+− ψ̄ e−i(PL+QL)
)

,

2

k

2g+−g−+ − 1

g4
−−

e−i(P+Q) ,

(3.43)

where, compared with (3.41), we have replaced the constant factors a1,2 by their leading

1/k behavior and in addition we have set the co-cycle dependent factors C
(a)
0,k to their

semiclassical values as described below (3.26). It is understood that ψ, ψ̄ and the various

group elements are represented in terms of the target-space variables as in section 2.1. In

the next section we will identify them with the N = 1 σ model deformations induced by

changing the circular distribution of NS5-branes to an elliptical one. In particular, the first

line above will be related to the deformation of the bosonic part, thus recovering the result

in [17], the second line will correspond to the deformation of the fermion bilinears and the

third line to the deformation of the quartic, in the fermions, term.

3.2.4 General circle deformations

We consider now general deformations of a circular distribution of NS5-branes. Their

positions in the B-plane are encoded by

bn = r0

(

e
2πin

k + ǫn

)

, n = 1, . . . , k ,

k
∑

n=0

ǫn = 0 . (3.44)

Here ǫn ≪ 1 are complex numbers indicating the shift of the position of the n-th NS5-brane

relative to the original circle. To leading order in ǫn all operators in (3.14) for which the

sum
k
∑

n=0

ǫn e
2πin(2j+1)

k (3.45)

is non-zero, contribute.

It is natural to proceed by looking for a deformation of the circle distribution so that

only a single operator is turned on. In other words, we would like a set of numbers ǫn with

the property that their sum is zero and all sums of the form (3.45) are zero except for one

given value of j. Obviously such a set exists and it is given by ǫn = ǫ e−
2πin(2j+1)

k . For

instance, for j = 0 we retrieve the deformation to the ellipsis studied previously, while for

j = (k−2)/2 we see that, as expected, we change the radius r0 → r0(1+ ǫ). The perturbed

positions of the NS5 branes are

bn = r0

(

e
2πin

k + ǫ e−
2πin(2j+1)

k

)

, n = 1, . . . , k . (3.46)

An important feature of the distribution (3.46) is that the NS5-branes are not uniformly

distributed. In order to understand that, we should consider the continuum limit of (3.46),
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which will be also important for the considerations of the next section. In this limit

k → ∞ and the discrete angles φn = 2πn
k are replaced by a continuous angle φ ∈ [0, 2π].

The discrete distribution (3.46) approaches

b(φ) = r0e
iφ
(

1 + ǫ e−2i(j+1)φ
)

(3.47)

and to leading order we can think of that as deforming the radius r0 of the original circular

distribution as r0 → r0(1+ǫ cos 2(j+1)ψ) and also changing the angle as φ = ψ+ǫ sin 2(j+

1)ψ. Hence the original uniform angular distribution with measure dψ is replaced by

dψ λ(ψ) , λ(ψ) = 1 + 2ǫ (j + 1) cos 2(j + 1)ψ . (3.48)

We would like now to understand the semiclassical limit of the general operators (3.22)-

(3.25). As in the case of the elliptical deformation we begin with the exponentials and in

the large-k limit we have the following correspondences

e2i(j+1)H → 1 , h = h̄ ≃ 0 ,

e2i(j+1)HL+i[2(j+1)−k]HR → e−i(PR+QR) , h ≃ 0 , h̄ ≃ 1 − 4(j + 1)

k
,

ei[2(j+1)−k]HL+2i(j+1)HR → e−i(PL+QL) , h ≃ 1 − 4(j + 1)

k
, h̄ ≃ 0 ,

ei[2(j+1)−k]H → e−i(P+Q) , h = h̄ ≃ 1 − 4(j + 1)

k
,

(3.49)

where we have indicated the semiclassical expressions explicitly in terms of the original

bosons P and Q, along with the conformal dimension up to order O(1/k) for which we are

interested in.

Considering the compact primaries, as in the previous example of the elliptical defor-

mation, we will find them indirectly, but extra care is needed as some of them arise as com-

posite operators. The parafermionic equivalence (2.15) implies that ψk
2
−j−1;− k

2
+j+1,− k

2
+j+1

is related to the operator ψj;j,j. Furthermore, the primary ψk
2
−j−1;− k

2
+j+2,− k

2
+j+1 arises as

a composite operator of the compact parafermion ψ with ψj;j,j. This can be seen by using

the OPE

ψ(z)ψk
2
−j−1;− k

2
+j+1,− k

2
+j+1(w, w̄) ∼ k − 2(j + 1)√

k − 2
(z−w)

−2j

k−2 ψk
2
−j−1;− k

2
+j+2,− k

2
+j+1(w, w̄) ,

(3.50)

arising from (B.10) (remembering to shift k → k − 2) and the parafermionic equivalence.

Hence, we have the exact identifications

ψk
2
−j−1;− k

2
+j+2,− k

2
+j+2 = ψj;j,jψψ̄ , h = h̄ ≃ 1 − j + 1

k
,

ψk
2
−j−1;− k

2
+j+2,− k

2
+j+1 = ψj;j,jψ , h ≃ 1 − j + 1

k
, h̄ =

j

k
,

ψk
2
−j−1;− k

2
+j+1,− k

2
+j+2 = ψj;j,jψ̄ , h =

j

k
, h̄ ≃ 1 − j + 1

k
,

(3.51)

where we have indicated the conformal dimensions of the different terms. We emphasize

that, in the product of two operators of the compact coset the dimension is not just the sum
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of the dimensions. One actually should think of them as one composite operator defined

through the OPE (B.10). The above identifications are correct as merely a simple product,

when we will later perform the comparison with the N = 1 σ model.

We can now assemble everything using the expressions (2.22) and (2.23) for the

parafermion fields and (2.32) and (2.34) for the non-compact primaries. The deforming

operators in the semiclassical limit read:

k
g̃2j
+−

g
2(j+1)
−−

ψψ̄ ,

−2(j + 1)
ig̃2j

+−

g2j+3
−−

(

g−+ ψ e−i(PR+QR) + g+− ψ̄ e−i(PL+QL)
)

,

2(j + 1)

k
g̃2j
+−

2(j + 1)g+−g−+ − 1

g
2(j+2)
−−

e−i(P+Q) ,

(3.52)

to which we should add their complex conjugates.

4. Deformations of NS5-branes: σ model approach and comparison

In this section we perform a complete comparison between a general infinitesimal defor-

mation of a circular distribution of NS5-branes on the same plane, as it results from two

different approaches. Namely, either from the corresponding N = 1 supersymmetric σ

model viewpoint or from the exact CFT approach of the previous section as an exactly

marginal perturbation based on the holographic conjecture. First we consider the simpler

case of the circular distribution deformed into a small ellipsis and complete the analysis

of [17] which was performed only for the bosonic part of the supersymmetric action. Subse-

quently, we consider the general planar deformation. The two approaches are in complete

agreement in their semiclassical range of common validity, including numerical coefficients.

4.1 Neveu-Schwarz five-branes on an ellipsis

Let us consider a system of k NS5-branes distributed on the circumference of an ellipsis

with axes ℓ1 and ℓ2 according to the density

ρ(x) =
1

πℓ1ℓ2
δ

(

1 −
(

x8
)2

ℓ21
−
(

x9
)2

ℓ22

)

δ
(

x6
)

δ
(

x7
)

. (4.1)

The supergravity solution corresponding to (4.1) along with its T-dual was constructed

and studied in detail in [17]. Here we are interested in the infinitesimal deformation of a

circular distribution with ℓ1 = ℓ2, which admits the exact CFT description (2.11), to an

ellipsis with ℓ1 = r0(1 + ǫ), ℓ2 = r0(1 − ǫ). Given a density distribution one can construct

the corresponding supergravity solution from (2.1)-(2.3). In our case it is convenient to

parameterize the Cartesian coordinates in a way appropriate to the density (4.1) as [17]

x = ℓ1

(

sinh ρ cos θ cos τ, sinh ρ cos θ sin τ, cosh ρ sin θ cosψ,

√

sinh2 ρ+
ℓ22
ℓ21

sin θ sinψ

)

.

(4.2)
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In the limit ℓ1 = ℓ2 = r0 one obtains the supergravity solution representing a uniform

continuous NS5-brane distribution [6] which semiclassicaly is described, after a proper

T-duality, by the σ model (2.29).

The leading order correction to (2.29), corresponding to an infinitesimal deformation

of the circle towards an ellipsis and after the proper T-duality and a reparameterization,

reads [17] (see eq. (38) in that ref.):

ds(1)2 =
2ǫk

cosh2 ρ

[

cos 2(ω − ϕ)
(

dθ2 − tan2 θdϕ2
)

+ 2 sin 2(ω − ϕ) tan θdϕdθ
]

, (4.3)

where we note the relation of the angular variables as compared to (4.2) is ϕ = τ and

ω = τ + ψ. The full metric is the sum of the metric in (2.29) and of that in (4.3), whereas

the antisymmetric tensor remains vanishing. It will be convenient to work with a coframe

{eı̂} such that the full metric takes the form

ds2 = ηı̂̂e
ı̂ê , (4.4)

with the hatted indices taking values ı̂ = 1̂, . . . , 4̂ and where

ηı̂̂ =











0 1
2 0 0

1
2 0 0 0

0 0 0 1
2

0 0 1
2 0











. (4.5)

The relevant coframe, associated spin connections and curvature tensors can be retrieved

from appendix D by setting n = 2 as it can be easily seen by comparing (4.3) with (D.1).

The N = 1 σ model using tangent-space objects is [34 – 37]

S =

∫

d2σ

(

ηı̂̂e
ı̂
−e

̂
+ + iηı̂̂Ψ

ı̂
+

(

∂−Ψ̂
+ + ω̂

−k̂
Ψk̂

+

)

+iηı̂̂Ψ
ı̂
−

(

∂+Ψ̂
− + ω̂

+k̂
Ψk̂

−

)

+
1

2
Rı̂̂k̂l̂Ψ

ı̂
+Ψ̂

+Ψk̂
−Ψl̂

−

)

, (4.6)

where eı̂± are the “chiral coframes”, i.e. the coframes with their exterior differentials re-

placed by the appropriate chiral derivative, and similarly ω̂
±k̂

is the corresponding connec-

tion ω̂
±k̂

= ω̂
ı̂k̂
eı̂±. Notice that the connection is the usual Levi-Civita connection since

we have vanishing NS-NS three-form flux.

The fermions in (4.6) are coupled to the scalar sector of the theory. Hence, we would

like to perform a field redefinition that renders them free, in the undeformed background,

as in the CFT formulation in [8]. Therefore, we write the N = 1 σ model (4.6) using the

unperturbed (i.e. ǫ = 0) connections from (D.6) and curvature tensors from (D.7) as

S0 =

∫

d2σ

(

(

k
(

∂+θ∂−θ + tan2 θ∂+ϕ∂−ϕ
)

+
i

2

(

Ψ3̂
+∂−Ψ4̂

+ + Ψ4̂
+∂−Ψ3̂

+

)

+ iΨ3̂
+Ψ4̂

+ω
4̂
−4̂

+
i

2

(

Ψ3̂
−∂+Ψ4̂

− + Ψ4̂
+∂−Ψ3̂

+

)

+ iΨ3̂
−Ψ4̂

−ω
4̂
+4̂

+ 2R3̂4̂3̂4̂Ψ
3̂
−Ψ4̂

−Ψ3̂
+Ψ4̂

+

)

+
(

k
(

∂+ρ∂−ρ+ coth2 ρ∂+ω∂−ω
)

+
i

2

(

Ψ1̂
+∂−Ψ2̂

+ + Ψ2̂
+∂−Ψ1̂

+

)

+iΨ1̂
+Ψ2̂

+ω
2̂
−2̂

+
i

2

(

Ψ1̂
−∂+Ψ2̂

− + Ψ2̂
+∂−Ψ1̂

+

)

+ iΨ1̂
−Ψ2̂

−ω
2̂
+2̂

+ 2R1̂2̂1̂2̂Ψ
1̂
−Ψ2̂

−Ψ1̂
+Ψ2̂

+

)

)

. (4.7)
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The fermions Ψ1̂
± and Ψ2̂

± =
(

Ψ1̂
±
)∗

belong to the non-compact coset while Ψ3̂
± and Ψ4̂

± =
(

Ψ3̂
±
)∗

belong to the compact one.

Now, the field redefinitions

∂±ϕ→ ∂±ϕ+
1

k
Ψ3

±Ψ4
± , ∂±ω → ∂±ω − 1

k
Ψ1

±Ψ2
± , (4.8)

when substituted into (4.7), lead classically to the following σ model

S =

∫

d2σ

(

k
(

∂+θ∂−θ + tan2 θ∂+φ∂−φ
)

+
i

2

(

Ψ3̂
+∂−Ψ4̂

+ + Ψ4̂
+∂−Ψ3̂

+

)

+
i

2

(

Ψ3̂
−∂+Ψ4̂

− + Ψ4̂
−∂+Ψ3̂

−

)

+
1

k
Ψ3̂

−Ψ4̂
−Ψ3̂

+Ψ4̂
+

+k
(

∂+ρ∂−ρ+ coth2 ρ∂+ω∂−ω
)

+
i

2

(

Ψ1̂
+∂−Ψ2̂

+ + Ψ2̂
+∂−Ψ2̂

+

)

+
i

2

(

Ψ1̂
−∂+Ψ2̂

− + Ψ2̂
−∂+Ψ1̂

−

)

− 1

k
Ψ1̂

−Ψ2̂
−Ψ1̂

+Ψ2̂
+

)

. (4.9)

The fermions have been decoupled from the scalars and are subject only to a Thirring-type

interaction [38, 39]. Therefore, they can be described through a compact boson of radius

R given by

R− 1

R
+ 2h = 0 , (4.10)

where h is the coupling constant of the 4-fermi interaction term. In our case the free boson

radii for the two cosets turn out to be

RSU(2)/U(1) = −1

k
+

√

1 +
1

k2
≃ 1 − 1

k
≃
√

k − 2

k
= RCFT

SU(2)/U(1)
,

RSL(2,R)/U(1) =
1

k
+

√

1 +
1

k2
≃ 1 +

1

k
≃
√

k + 2

2
= RCFT

SL(2,R)/U(1)
.

(4.11)

The CFT radii at the right-hand side are those of the bosons P and Q that bosonize the

free fermions of each supersymmetric coset and are consistent with the way these bosons

enter into the exponentials in (C.1) and (C.3). The match here is only to leading order

in 1/k since the σ model captures only the semiclassical features of the exact CFT and

furthermore we have applied the field redefinitions classically ignoring any Jacobians from

the transformations. These fermions correspond to the bosonized ones of the CFT side in

terms of the fields P and Q defined in section 2.2 as follows

eiφ2e−iQL = Ψ1̂
+ , e−iφ2eiQL = Ψ2̂

+ , eiφ1e−iPL = Ψ3̂
+ , e−iφ1eiPL = Ψ4̂

+ ,

e−iφ2e−iQR = Ψ1̂
− , eiφ2eiQR = Ψ2̂

− , e−iφ1e−iPR = Ψ3̂
− , eiφ1eiPR = Ψ4̂

− .

(4.12)

The introduction of the non-local phases is necessary in order to ensure gauge invari-

ance of the fermions that have their origin in the ungauged theory. This is the same reason

for the similar non-local phases appearing in the definitions of the classical parafermions.

Since the fermions anticommute we should have included a co-cycle factor in the above

definitions. This is not necessary as long as, in the comparison with the supersymmetric

σ-model results of the deformation below, we keep the fermions of the compact coset Ψ3,4
±
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to the left of the non-compact counterparts Ψ1,2
± . In this manner the effect of the non-trivial

co-cycles in the semiclassical limit we are interested in is properly taken into account by

the fact that in (3.40) we have C
(a)
0,k = 1 for a = 1, 2, 4 and C

(3)
0,k = −1 in that limit.

The idea now is to write the complete σ model for the deformed background, perform

the field redefinitions (4.8) to render the fermions free in the undeformed σ model, and

consider the leading correction. The discussion will be more transparent if we consider

separately the purely bosonic piece, the 2-fermi term, and the 4-fermi term. The purely

bosonic piece is

Sbose =

∫

d2σ
1

2

(

e1̂+e
2̂
− + e1̂−e

2̂
+ + e3̂+e

4̂
− + e3̂−e

4̂
+

)

(4.13)

and performing the redefinitions (4.8) on this term does not generate any extra bosonic

terms. The order ǫ correction in (4.13) can be written very compactly if we notice that the

chiral coframes eı̂± with ı̂ = 3, 4, which are the only ones contributing to the correction,

can be expressed in terms of the parafermion fields (2.22) and (2.23) as4

e3̂+ = eiφ1ψ + ǫ
e−2iω

cosh2 ρ
e−iφ1ψ† , e3̂− = e−iφ1ψ̄ + ǫ

e−2iω

cosh2 ρ
eiφ1ψ̄† ,

e4̂+ = e−iφ1ψ† + ǫ
e2iω

cosh2 ρ
eiφ1ψ , e4̂− = eiφ1ψ̄† + ǫ

e2iω

cosh2 ρ
e−iφ1ψ̄ .

(4.14)

Consequently, the order ǫ bosonic correction reads:

δSbose = ǫ

∫

d2σ
k

cosh2 ρ

(

e2iωψψ̄ + e−2iωψ†ψ̄†
)

. (4.15)

Taking into account (2.35) and (4.12) we see that this is indeed the first line of the per-

turbation (3.43) based on CFT considerations, with infinitesimal parameter ǫ. Of course

it also reproduces the change in the metric (4.3) above, due to the deformation. This

matching of the bosonic part of the action corresponding to the deformation was shown

in [17]. We move on now to the fermionic pieces of the action.

The original 2-fermi terms are5

S2−fermi = i

∫

d2σ

(

(

Ψ1̂
+Ψ2̂

+ω
2̂
−2̂

+ Ψ1̂
−Ψ2̂

−ω
2̂
+2̂

)

+
(

Ψ3̂
+Ψ4̂

+ω
4̂
−4̂

+ Ψ3̂
−Ψ4̂

−ω
4̂
+4̂

)

+

+
(

Ψ2̂
+Ψ4̂

+ω
1̂
−4̂

+ Ψ2̂
−Ψ4̂

−ω
1̂
+4̂

)

+
(

Ψ1̂
+Ψ3̂

+ω
2̂
−3̂

+ Ψ1̂
−Ψ3̂

−ω
2̂
+3̂

)

)

(4.16)

and the order ǫ correction they yield is

iǫ

∫

d2σ
1

cosh2 ρ

[

tan θ
(

Ψ3̂
+Ψ4̂

+

(

e2iω−iϕ−iφ1ψ̄ − e−2iω+iϕ+iφ1ψ̄†
)

+Ψ3̂
−Ψ4̂

−

(

e2iω−iϕ+iφ1ψ − e−2iω+iϕ−iφ1ψ†
))

+2 tanh ρ
(

Ψ2̂
+Ψ4̂

+e
−3iω+iφ1ψ̄† + Ψ1̂

+Ψ3̂
+e

3iω−iφ1ψ̄

+Ψ2̂
−Ψ4̂

−e
−3iω−iφ1ψ† + Ψ1̂

−Ψ3̂
−e

3iω+iφ1ψ
)]

. (4.17)

4Left-/right-moving fields labeled by +/− correspond to holomorphic/antiholomorphic objects.
5Notice that we have used symmetry properties like ω1̂

−1̂
= −ω2̂

−2̂
etc. to reduce the number of terms.
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In addition to those terms, we obtain extra 2-fermi terms at order ǫ after applying (4.8)

to (4.15). They are

−iǫ
∫

d2σ
tan θ

cosh2 ρ

(

e2iω−iϕ+iφ1ψΨ3̂
−Ψ4̂

− + e2iω−iϕ−iφ1 ψ̄Ψ3̂
+Ψ4̂

+

)

+ c.c. (4.18)

and therefore they cancel the terms in the first two lines of (4.17). All in all the order ǫ

correction to the 2-fermion terms is

δS2−fermi = 2iǫ

∫

d2σ
sinh ρ

cosh3 ρ

(

Ψ2̂
+Ψ4̂

+e
−3iω+iφ1ψ̄† + Ψ2̂

−Ψ4̂
−e

−3iω−iφ1ψ†

+Ψ1̂
+Ψ3̂

+e
3iω−iφ1ψ̄ + Ψ1̂

−Ψ3̂
−e

3iω+iφ1ψ
)

. (4.19)

Again, taking into account (2.35) and (4.12) we see that this is the second line of the

perturbation (3.43) based on CFT considerations, with the same infinitesimal parameter ǫ.

Finally we consider the 4-fermi terms. The original ones, using the antisymmetry

properties of the Riemann tensor to reduce the number of terms, read:

S4−fermi = 2

∫

d2σ

[

R1̂2̂1̂2̂Ψ
1̂
+Ψ2̂

+Ψ1̂
−Ψ2̂

− +R3̂4̂3̂4̂Ψ
3̂
+Ψ4̂

+Ψ3̂
−Ψ4̂

− +R2̂4̂2̂4̂Ψ
2̂
+Ψ4̂

+Ψ2̂
−Ψ4̂

−

+R1̂3̂1̂3̂Ψ
1̂
+Ψ3̂

+Ψ1̂
−Ψ3̂

− +R2̂4̂3̂4̂

(

Ψ2̂
+Ψ4̂

+Ψ3̂
−Ψ4̂

− + Ψ3̂
+Ψ4̂

+Ψ2̂
−Ψ4̂

−

)

+R1̂3̂3̂4̂

(

Ψ1̂
+Ψ3̂

+Ψ3̂
−Ψ4̂

− + Ψ3̂
+Ψ4̂

+Ψ1̂
−Ψ3̂

−

)

]

. (4.20)

To order ǫ their contribution to the Lagrangian density is

2ǫ

k cosh2 ρ

[

−tan2 θ cos 2(ω−ϕ)Ψ3̂
+Ψ4̂

+Ψ3̂
−Ψ4̂

−+
(

(

1−2 sinh2 ρ
)

e−4iωΨ2̂
+Ψ4̂

+Ψ2̂
−Ψ4̂

−+c.c.
)

+
(

tan θ tanh ρe−3iω+iϕ
(

Ψ2̂
+Ψ4̂

+Ψ3̂
−Ψ4̂

− + Ψ3̂
+Ψ4̂

+Ψ2̂
−Ψ4̂

−

)

+ c.c.
)

]

. (4.21)

We obtain also 4-fermion terms at the same order in ǫ by applying (4.8) to (4.15) and

to (4.16). That obtained from (4.15) read:

−2ǫ

∫

d2σ
tan2 θ cos 2(ω − ϕ)

k cosh2 ρ
Ψ3̂

+Ψ4̂
+Ψ3̂

−Ψ4̂
− , (4.22)

whereas those coming from (4.16) are

2ǫ

∫

d2σ

[

2
tan2 θ cos 2(ω − ϕ)

k cosh2 ρ
Ψ3̂

+Ψ4̂
+Ψ3̂

−Ψ4̂
−

−tanh ρ tan θ

k cosh2 ρ
e−3iω+iϕ

(

Ψ2̂
+Ψ4̂

+Ψ3̂
−Ψ4̂

− + Ψ3̂
+Ψ4̂

+Ψ2̂
−Ψ4̂

− + c.c.
)

]

. (4.23)

Combining everything together we conclude that the total deformation of the 4-fermion

terms to leading order in ǫ is

δS4−fermi = 2ǫ

∫

d2σ
1 − 2 sinh2 ρ

k cosh2 ρ

(

e4iωΨ1̂
+Ψ3̂

+Ψ1̂
−Ψ3̂

− + e−4iωΨ2̂
+Ψ4̂

+Ψ2̂
−Ψ4̂

−

)

. (4.24)
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Using (2.35) and (4.12) we see that this is the last line of the perturbation (3.43) based on

CFT considerations, with the infinitesimal parameter ǫ.

This completes our proof that the conjectured perturbation (3.43) based on holography

and exact CFT considerations completely reproduces the one obtained from the σ-model

semiclassical approach.

4.2 General deformations of circular NS5-brane distribution

We analyze now general deformations of the circular NS5-brane system corresponding

to small changes of the radius r0 → r0 + δr0. We can expand δr0 in Fourier modes

δr0 = ǫr0 cos(nψ) with n ∈ Z and focus on each mode separately. The corresponding

distribution describes NS5-branes smeared on the x8 − x9 plane along the curve
(

x8
)2

+
(

x9
)2

= r20 + ξ(ψ) , ψ = tan−1 (x9/x8) , (4.25)

which represents a general planar deformation of the circular distribution. To linear order

in the deformation parameter we take ξ(ψ) = 2ǫ r20 cos(nψ) and this is the continuous limit

of the discrete distribution (3.46) upon the identification 2(j+1) ≡ n and for the values of n

where 0 ≤ j ≤ (k−2)/2. The mode with n = 0, i.e. a uniform rescaling of the radius of the

circle, corresponds according to the discussion in section 3.2.2 to the operator j = (k−2)/2.

Since the latter is of order k the discussion here is not appropriate for that operator and

instead we refer the reader to section 3.2.2 where we studied its semiclassical expression.

The mode with n = 1 is not captured from the set of operators under consideration since

the corresponding value of j = −1
2 does not belong to the allowed interval. In any case, we

see that only a finite number of continuous deformations have discrete analogues. These

will be the deformations we will be interested in and hence we will assume that 2 ≤ n≪ k.

The discrete distribution entails also a non-trivial angular distribution λ(ψ) and hence the

full NS5-brane density reads:

ρ(x) =
1

π
λ(ψ)δ

(

(

x8
)2

+
(

x9
)2 − r20 − ξ(ψ)

)

δ
(

x6
)

δ
(

x7
)

, (4.26)

where λ(ψ) is the angular density in (3.48). According to this it is convenient to parame-

terize the Cartesian coordinates along the curve as

x8 = r0 cosψ(1 + ǫ cosnψ) , x9 = r0 sinψ(1 + ǫ cosnψ) , (4.27)

to linear order in ǫ.6 The deformation is geometrically depicted in figures 1 and 2.

Using the above, the harmonic function (2.4), in the near-horizon limit where the 1 is

dropped, reads:

Hn(ρ, θ, ψ) =
k

2π
(4.28)

∫ 2π

0
dψ′ λ(ψ′)

r2 + r20 + r20 sin2 θ + ξ(ψ′) − 2r0
√

r2 + r20
√

r20 + ξ(ψ′) sin θ cos(ψ − ψ′)
.

6An alternative, equivalent to (3.47), coordinate system is the one corresponding to x8 = r0(cosφ +

ǫ cos(n − 1)φ), x9 = r0(sinφ − ǫ sin(n − 1)φ), with the angular relation, again to linear order in ǫ, ψ =

φ− ǫ sinnφ. In this system the angular distribution is easily seen to be uniform, i.e. λ(ψ)dψ = dφ. This is

the coordinate system used in [17] for n = 2.
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Figure 1: On the left, the discrete distribution of k ∼ 120 branes on a deformed circle for n = 8

(j = 3) and ǫ = 0.1. It is reproduced using (3.46), which in the continuum is equivalent to the

parametrization of the deformation described in footnote 6. On the right, we depict the same

deformation in the continuous approximation using the parametrization (4.27).

We are interested in the leading order ǫ correction to H which is given by

δHn = ǫ
k

2π

∫ 2π

0
dψ′

(

(n− 1) cosnψ′

A−B cos(ψ′ − ψ)
+

(A− 2r20) cosnψ′
(

A−B cos(ψ′ − ψ)
)2

)

, (4.29)

where we defined for convenience

A(ρ, θ) = r2 + r20 + r20 sin2 θ , B(ρ, θ) = 2r0

√

r2 + r20 sin θ .

Shifting the integration variable as ψ′ → ψ′ +ψ enables us to write the previous expression

in terms of the integral

In(A,B) =
1

2π

∫ 2π

0
dψ′ cosnψ′

A−B cosψ′ =
1√

A2 −B2

(

A−
√
A2 −B2

B

)n

, (4.30)

as

δHn = ǫk cosnψ
(

(n− 1)In(A,B) − (A− 2r20)
∂

∂A
In(A,B)

)

, (4.31)

where we have used the fact that the same integral as In but with the cosine replaced by

sine vanishes due to its parity. Explicitly, the final result is

δHn = ǫk cosnψ

(

r0 sin θ
√

r2 + r20

)n
nr2(2r2 + r20) − r40 − r20

(

(2 − n)r2 + r20
)

cos 2θ

(r2 + r20 cos2 θ)3
. (4.32)

The deformation of the harmonic function above yields immediately the corresponding

deformation of the geometry of the transverse space and the full metric becomes

ds2

k
=

(

dr2

r2 + r20
+ dθ2 +

r2 cos2 θdτ2

r2 + r20 cos2 θ
+

(

r2 + r20
)

sin2 θdψ2

r2 + r20 cos2 θ

)

[

1 + ǫ×

× cosnψ

(

r0 sin θ
√

r2 + r20

)n
nr2(2r2 + r20) − r40 − r20

(

(2 − n)r2 + r20
)

cos 2θ

(r2 + r20 cos2 θ)3

]

. (4.33)
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Recall, however, that the holographic approach refers to the T-dual of the original geom-

etry and it is necessary to know also the deformation of the B field in order to T-dualize.

Instead of following this route, we will start from the holographic result for the bosonic de-

formation and show that after T-duality and appropriate reparameterization yields exactly

the deformation of the transverse metric induced by (4.32). Subsequently, we will verify

that the fermionic deformations of the N = 1 σ model match the holographic predictions.

The first line of (3.52) is the purely bosonic deformation of the SL(2,R)/U(1) ×
SU(2)/U(1) theory

δSbose = ǫ

∫

d2σ
k sinn−2 θ

coshn ρ

(

ei(nω−(n−2)ϕ)ψψ̄ + c.c.
)

, (4.34)

which implies a corresponding deformation of the metric

ds2n = 2ǫk
sinn−2 θ

coshn ρ

[

cosn(ω − ϕ)
(

dθ2 − tan2 θdϕ2
)

+ 2 sin n(ω − ϕ) tan θdϕdθ
]

. (4.35)

Explicitly the full metric becomes

ds2

k
= dρ2 + coth2 ρ dω2 + dθ2 + tan2 θ dϕ2 + 2ǫ

sinn−2 θ

coshn ρ
×

×
(

cosn(ω − ϕ)
(

dθ2 − tan2 θ dϕ2
)

+ 2 sin n(ω − ϕ) tan θ dϕdθ
)

. (4.36)

The dilaton is not modified and hence we can read it from (2.29)

e−2Φ = sinh2 ρ cos2 θ , (4.37)

while the antisymmetric tensor remains vanishing. As a first check one can indeed verify

that the above background is a solution of the equations of motion to leading order in ǫ.

We proceed now with the T-duality. For that purpose we need to perform as before the

reparameterizations ω = ψ+τ and ϕ = τ which make manifest the isometry corresponding

to shifts of the new coordinate τ . T-dualizing along ∂τ yields a new metric

ds2

k
=

dr2

r2 + r20
+ dθ2 +

r2 cos2 θdτ2

r2 + r20 cos2 θ
+

(

r2 + r20
)

sin2 θdψ2

r2 + r20 cos2 θ

+2ǫ

(

r0 sin θ
√

r2 + r20

)n{

− sinnψ sin 2θ

(

r2 + r20
)

dθdψ

r2 + r20 cos2 θ

+ cosnψ

(

dθ2 +

(

sin θ cos θ

r2 + r20 cos2 θ

)2
(

r4dτ2 −
(

r2 + r20
)2
dψ2

)

)}

, (4.38)

a dilaton

e−2Φ =
r2 + r20 cos2 θ

r20
− 2ǫ cosnψ

r2

r20

(

r0 sin θ
√

r2 + r20

)n

(4.39)

and a two-form potential with non-vanishing components

Bτψ
k

=
1

Σ
+ ǫ cosnψ

r2

Σ2 cos2 θ

rn0 sinn θ
(

r2 + r20
)n

2
+1

,

Bτθ
k

= ǫ sinnψ
r2

Σ sin θ cos θ

rn0 sinn θ
(

r2 + r20
)n

2
+1

, (4.40)
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where we have defined

Σ = 1 +
r2 tan2 θ

r2 + r20
. (4.41)

Finally, if we perform the following reparameterizations

δr = − ǫr

n− 1

rn0 sinn θ
(

r2 + r20
)n

2
−1 (

r2 + r20 cos2 θ
)

cosnψ ,

δθ = −ǫ cot θ
n− 1

rn0 sinn θ
(

r2 + r20
)

n
2
−1 (

r2 + r20 cos2 θ
)

cosnψ , (4.42)

δψ =
ǫ

n− 1

1

sin2 θ

rn0 sinn θ
(

r2 + r20
)

n
2

sinnψ ,

and set r = r0 sinh ρ, we find that the metric in the new coordinate system is exactly

the metric (4.33) we found earlier. Note that these reparameterizations do not change

the angular character of the variables θ and ψ since they are nowhere singular and their

periodicity is respected.

We proceed now to the analysis of the fermionic terms in the N = 1 σ model. The

necessary spin-connection and curvature two-form associated to the metric (4.36) are given

in appendix D. As in the case of the elliptic deformation, we need first perform the

redefinitions (4.8) in order to render the σ-model fermions free. The original order ǫ 2-

fermi terms are

iǫ

∫

d2σ
sinn−2 θ

coshn ρ

[

tan θ
(

Ψ3̂
+Ψ4̂

+

(

eni(ω−ϕ)+iϕ−iφ1 ψ̄ − e−ni(ω−ϕ)−iϕ+iφ1 ψ̄†
)

+Ψ3̂
−Ψ4̂

−

(

eni(ω−ϕ)+iϕ+iφ1ψ − e−ni(ω−ϕ)−iϕ−iφ1ψ†
))

+n tanh ρ
(

Ψ2̂
+Ψ4̂

+e
−ni(ω−ϕ)−2iϕ−iω+iφ1 ψ̄† + Ψ1̂

+Ψ3̂
+e

ni(ω−ϕ)+2iϕ+iω−iφ1 ψ̄

+Ψ2̂
−Ψ4̂

−e
−ni(ω−ϕ)−2iϕ−iω−iφ1ψ† + Ψ1̂

−Ψ3̂
−e

ni(ω−ϕ)+2iϕ+iω+iφ1ψ
)

]

(4.43)

and, along with the contribution of (4.34) from the field redefinition (4.8), combine to

δS2−fermi = iǫn

∫

d2σ
sinn−2 θ sinh ρ

cosh3 ρ

(

Ψ2̂
+Ψ4̂

+e
−ni(ω−ϕ)−2iϕ−iω+iφ1 ψ̄†

+Ψ2̂
−Ψ4̂

−e
−ni(ω−ϕ)−2iϕ−iω−iφ1ψ† + Ψ1̂

+Ψ3̂
+e

ni(ω−ϕ)+2iϕ+iω−iφ1 ψ̄

+Ψ1̂
−Ψ3̂

−e
ni(ω−ϕ)+2iϕ+iω+iφ1ψ

)

. (4.44)

This matches the operators in the second line of (3.52) that we computed using the con-

jectured holography and CFT.

Let us finally check the 4-fermion terms. Besides the ones coming from the original

4-fermi interactions we have additional ones coming from (4.34) and from the original 2-

fermion terms after performing the field redefinition (4.8). Combining everything together

results in the expression

δS4−fermi = ǫn

∫

d2σ
(1 − n sinh2 ρ) sinn−2 θ

k coshn ρ

(

ein(ω−ϕ)+2iω+2iϕΨ1̂
+Ψ3̂

+Ψ1̂
−Ψ3̂

−

+e−in(ω−ϕ)−2iω−2iϕΨ2̂
+Ψ4̂

+Ψ2̂
−Ψ4̂

−

)

, (4.45)

which matches exactly the last line of (3.52).
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5. Summary and perspectives

The starting point of our analysis was an exact N = 4 string background (metric, an-

tisymmetric tensor and dilaton), generated by k parallel NS5-branes distributed over a

circle transverse to their worldvolume. In the near-horizon regime it is described by the

Kazama-Suzuki model SU(2)/U(1) × SL(2,R)/U(1).

The geometric deformations of this setup can be studied in two different manners.

Either by using holography, which relates NS5-brane worldvolume operators to σ-model

worldsheet operators (section 3), or by explicitly perturbing the locus of the NS5-branes,

from a circle to an n-bump deformed circle, and computing the corresponding σ-model

background fields (section 4). From the latter we can read-off the worldsheet operators

that trigger the perturbation. These are marginal since the NS5-brane perturbations do

not alter the conformality of the N = 4 string backgrounds at hand. Actually, they exactly

marginal as they originate from chiral primary operators. They are indeed described in

terms of compact parafermions dressed with non-compact and compact primaries, whose

conformal weights add up to (1, 1). All these generalize the results obtained in [17] for

the elliptical deformation of the circle, to the infinite tower of n-bump modes. As already

stressed, these computations are performed in the semiclassical approximation, but the

whole framework allows to safely conjecture their validity beyond that level.

The marginal worldsheet operators that are revealed by the deformed-σ-model ap-

proach turn out to be in agreement with those found using the LST dictionary for n-bump

NS5-brane displacements away from the circle. This brilliantly demonstrates the validity

of the holographic duality for a large class of operators. To the best of our knowledge,

this result is unique as is the construction of the set of non-left-right-factorized marginal

operators of the SU(2)/U(1) × SL(2,R)/U(1) conformal model.

One could generalize this study in a variety of directions. For instance, one can con-

sider non-planar deformations of the NS5-branes and verify the validity of the holographic

dictionary. Furthermore, it would be very interesting to extend this analysis to time-

dependent deformations where issues like supersymmetry breaking can be addressed in

an exact CFT framework. A challenging open problem pertains as to the exact CFT

description of NS5-brane systems, for instance the elliptic distribution, which preserve a

large part of the original transverse-space symmetries. Presumably generalizations of the

compact and non-compact parafermions would be instrumental for such an endeavor.

Acknowledgments

The authors would like to thank their colleagues C. Bachas, C. Kounnas and V. Niar-

chos for stimulating exchanges. The work of Angelos Fotopoulos is partially supported by

the European Community’s Human Potential Programme under contract MRTN-CT-2004-

005104 and by the Italian MUR under contracts PRIN-2005023102 and PRIN-2005024045.

Angelos Fotopoulos would like to thank CERN Theory Division for its warm hospitality

where part of this work has been done. Marios Petropoulos thanks Neuchâtel University,

Patras University and CERN Theory Division for kind hospitality at various stages of this

– 31 –



J
H
E
P
0
2
(
2
0
0
8
)
0
8
7

collaboration, and acknowledges financial support by the Swiss National Science Foun-

dation, the French Agence Nationale de la Recherche, contract 05-BLAN-0079-01, and

the EU under the contracts MEXT-CT-2003-509661, MRTN-CT-2004-005104 and MRTN-

CT-2004-503369. Nikolaos Prezas wishes to thank the Ecole Polytechnique for its warm

hospitality where part of this work was done. Konstadinos Sfetsos acknowledges partial

support provided through the European Community’s program “Constituents, Fundamen-

tal Forces and Symmetries of the Universe” with contract MRTN-CT-2004-005104, the

INTAS contract 03-51-6346 “Strings, branes and higher-spin gauge fields” and the Greek

Ministry of Education programs ΠΥΘAΓOPAΣ with contract 89194.

A. Linear-dilaton background and the N = 4 superconformal algebra

The CHS conformal field theory Rφ×SU(2)k contains a linear dilaton along the φ direction

with background charge q =
√

2
k (where k is the number of NS5-branes) and a N = 1

supersymmetric SU(2) WZW model at level k. We will exhibit the N = 4 superconformal

algebra [40] supported on Rφ × SU(2)k following the discussion of [8].

The supersymmetric WZW model is decomposed into a bosonic SU(2) WZW model

at level k − 2 with affine currents J i and three free fermions ψi, i = 1, 2, 3. We denote

by φ the boson corresponding to the dilaton direction and by ψφ is its superpartner. The

operator algebra is

∂φ(z)∂φ(w) = − 1

(z − w)2
,

ψi(z)ψj(w) =
δij

z − w
,

J i(z)Jj(w) =
(k − 2)δij
2(z − w)2

+ iǫijk
Jk(w)

z − w
,

(A.1)

with ǫ123 = 1. We can change basis to J± = J1 ± iJ2 and the corresponding OPEs read:

J3(z)J3(w) =
k − 2

2(z − w)2
,

J3(z)J±(w) = ±J
±(w)

z − w
,

J+(z)J−(w) =
k − 2

(z −w)2
+

2J3(w)

z − w
.

(A.2)

We now define

ψ± =
1√
2
(ψ1 ± iψ2) , (A.3)

ψ =
1√
2
(ψφ + iψ3) (A.4)

and their OPEs read:

ψ(z)ψ∗(w) = ψ+(z)ψ−(w) =
1

z − w
. (A.5)

The currents of the supersymmetric SU(2) WZW model at level k are given by

J tot
i = Ji −

i

2
ǫijkψjψk (A.6)
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and in particular

J tot
3 = J3 − iψ1ψ2 = J3 + ψ+ψ− . (A.7)

The primaries Φsu
j;m,m̄ of the bosonic SU(2) WZW model have conformal weight

h =
j(j + 1)

k
, (A.8)

while those of the linear dilaton theory have

h
(

eaφ
)

= −1

2
a(a+ q) . (A.9)

The system Rφ×SU(2) is known to exhibit a “small” N = 4 superconformal symmetry,

in line with the fact that the dual configuration of NS5-branes is 1/2 BPS and in type II

string theories preserves 16 supersymmetries in space-time. The superconformal generators

are
G = iψφ∂φ+ iq∂ψφ + q(J1ψ1 + J2ψ2 + J3ψ3 − iψ1ψ2ψ3) ,

G1 = iψ1∂φ+ iq∂ψ1 + q(−J1ψφ + J2ψ3 − J3ψ2 + iψ2ψ3ψφ) ,

G2 = iψ2∂φ+ iq∂ψ2 + q(−J2ψφ + J3ψ1 − J1ψ3 + iψ3ψ1ψφ) ,

G3 = iψ3∂φ+ iq∂ψ3 + q(−J3ψφ + J1ψ2 − J2ψ1 + iψ1ψ2ψφ)

(A.10)

and the SU(2) R-symmetry currents are

S1 = − i

2
(ψφψ1 + ψ2ψ3) ,

S2 = − i

2
(ψφψ2 + ψ3ψ1) ,

S3 = − i

2
(ψφψ3 + ψ1ψ2) .

(A.11)

These currents generate an SU(2) current algebra at level one. The energy-momentum

tensor reads:

T = −1

2
(∂φ)2 − 1

2
q∂2φ+

J iJ i

k
− 1

2
ψ∗∂ψ − 1

2
ψ∂ψ∗ − 1

2
ψ+∂ψ− − 1

2
ψ−∂ψ+ . (A.12)

For our purposes it will be useful to exhibit an N = 2 subalgebra of the above algebra

with G and G3 the corresponding superconformal generators. We can define

G± =
1√
2

(G± iG3) (A.13)

and explicitly they are given by7

G+ = iψ
(

∂φ− qJ tot
3

)

+ iq∂ψ + qJ−ψ+ , (A.14)

G− = iψ∗ (∂φ+ qJ tot
3

)

+ iq∂ψ∗ + qJ+ψ− . (A.15)

7An interesting feature of this construction is that although ∂φ is not a conformal primary field in the

linear-dilaton background, the G± are primaries since the cubic term coming from contracting ∂2φ with ∂φ

cancels out another cubic term coming from ψ∂ψ∗ or ψ∗∂ψ contracted with either ∂ψ or ∂ψ∗.
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The U(1) R-symmetry generator is

JR = ψψ∗ + ψ+ψ− = 2S3 (A.16)

and the level one SU(2) raising and lowering operators are

S+ = S2 + iS1 = ψψ+ , S− = S2 − iS1 = ψ−ψ∗ . (A.17)

We can also form the combinations

G̃± =
1√
2

(G1 ± iG2) , (A.18)

which explicitly read:

G̃+ = iψ+
(

∂φ+ q(J3 − ψψ∗)
)

+ iq∂ψ+ − qJ+ψ ,

G̃− = iψ−(∂φ− q(J3 − ψψ∗)
)

+ iq∂ψ− − qJ−ψ∗ .
(A.19)

The operators defined above satisfy the small N = 4 superconformal algebra

JR(z)S±(w) ∼ ± 2S±

z − w
, S+(z)S−(w) ∼ JR(w)

z − w
+

1

(z − w)2
,

S+(z)G−(w) ∼ − G̃+

z − w
, S+(z)G̃−(w) ∼ G+

z −w
,

S−(z)G+(w) ∼ − G̃−

z − w
, S−(z)G̃+(w) ∼ G−

z −w
.

(A.20)

The OPEs of G± and G̃± with JR imply the charges +1 for G+, G̃+ and −1 for G−, G̃−.

The remaining OPEs of the SU(2) currents with the supercharges are regular. In addition

the doublets have singular OPEs among themselves

G+(z)G−(w) ∼ 2c

3(z − w)3
+

2JR(w)

(z − w)2
+

2T (w) + ∂JR(w)

z − w
,

G̃+(z)G̃−(w) ∼ 2c

3(z − w)3
+

2JR(w)

(z − w)2
+

2T (w) + ∂JR(w)

z − w
,

G+(z)G̃+(0) ∼ S+(w)

(z −w)2
+
∂S+(w)

2(z − w)
,

G−(z)G̃−(0) ∼ S−(w)

(z −w)2
+
∂S−(w)

2(z − w)
,

(A.21)

where c = 6 for the CHS background.

In the remaining part of this appendix we would like to demonstrate that the operators

in (3.12), when inserted in (3.2), leave the N = 4 algebra unbroken. We follow the analysis

of [41]. As it is well-known a perturbation which preserves at least an N = 2 should be

constructed using chiral or antichiral fields. The chiral fields Oa are annihilated by G+
− 1

2

and have charge QR = +1 and dimension h = 1
2 . The antichiral fields are annihilated by

G−
− 1

2

and have charge QR = −1 and dimension h = 1
2 . The general perturbation which

preserves the N = 2 subalgebra containing G− and G+ is

δS =

∫

d2z
(

λaG
−Oa + λ̄aG

+Ōa
)

(A.22)
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where Oa/Ōa is an chiral/antichiral field and G−Oa means
∮

dzG−(z)Oa(0) (which will

be implied for the rest of this appendix). The index a parameterizes the set of chiral

(antichiral) operators. Then it turns out that the requirement of N = 4 SCFT invariance

imposes the additional constraints:

S−Oa = M b̄
aŌa , S+Ōa = −M b

āOa , M b̄
aM

c
b̄ = δca . (A.23)

Now we will consider the operators (3.12). In this case the matrix M b̄
a is one by one

and can be set to unity. Therefore the index a can be dropped and the operator under

consideration is

O = ψ+Φsu
j;j,je

−q(j+1)φ , (A.24)

where we write only its holomorphic part. It is easy to verify, using the explicit expressions

of the N = 4 generators, that it is indeed a chiral operator as claimed in the main text.

Moreover, it is straightforward to show that the operator

Ō = S−O = −ψ∗Φsu
j;j,je

−q(j+1)φ (A.25)

is an antichiral operator. Hence the constraints (A.23) are satisfied and perturbing the

theory with the upper component of any of the operators (A.24) does not spoil N = 4

superconformal invariance. The same discussion can be trivially extended to the antiholo-

morphic sector.

B. Parafermionic operator products

B.1 Compact parafermions and SU(2) current algebra

Let us consider the SU(2) current algebra at level k ≥ 2 whose currents obey the following

operator algebra:

J3(z)J3(w) ∼ k

2

1

(z − w)2
,

J3(z)J±(w) ∼ ±J
±(w)

z − w
,

J+(z)J−(w) ∼ k

(z − w)2
+

2J3(w)

z − w

(B.1)

and decompose the currents as

J3 = i

√

k

2
∂P ,

J+ =
√
kψ exp i

√

2

k
P ,

J− =
√
kψ† exp−i

√

2

k
P ,

(B.2)

with P being a free boson and ψ,ψ† being the basic the parafermion fields.
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In general the compact parafermionic algebra at level k contains a set of objects ψl and

ψ†
l = ψ−l where l = 0, 1, . . . , k − 1 and so that ψ0 = 1 and ψ1 = ψ (see for instance [42]).

Their conformal dimensions are ∆l = l − l2

k . The generic parafermion OPEs are

ψl1(z)ψl2(w) = Cl1,l2(z − w)∆l1+l2
−∆l1

−∆l2

(

ψl1+l2(z) + O(z −w)
)

(B.3)

and

ψl(z)ψ
†
l (w) = (z − w)−2∆l

(

1 +
2∆l

c
(z − w)2T (w) + O

(

(z − w)3
)

)

, (B.4)

where c = 2(k−1)
k+2 is the central charge of the parafermion theory, T the corresponding

energy-momentum tensor and the structure constants Cl1,l2 , which are determined by as-

sociativity of the OPE, are given by

Cl1,l2 =

(

Γ(k − l1 + 1)Γ(k − l2 + 1)Γ(l1 + l2 + 1)

Γ(l1 + 1)Γ(l2 + 1)Γ(k + 1)Γ(k − l1 − l2 + 1)

)
1
2

. (B.5)

Using (B.3) and (B.4) we find that

ψ(z)ψ(w) ∼ (z − w)−
2
kψ2(w) ,

ψ(z)ψ†(w) ∼ (z − w)−2(1− 1
k )

(B.6)

and upon using also

∂P (z)∂P (w) ∼ − 1

(z − w)2
,

eiaP (z)eibP (w) ∼ (z −w)abeiaP (z)+ibP (w) ,
(B.7)

we can check that the decomposed currents in (B.2) obey the SU(2) current algebra.

An affine SU(2) primary Φsu
j;m,m̄ satisfies

J3(z)Φsu
j;m,m̄(w) ∼ m

z − w
Φsu
j;m,m̄ ,

J±(z)Φsu
j;m,m̄(w) ∼ j ∓m

z −w
Φsu
j;m±1,m̄

(B.8)

and decomposing it in terms of the parafermionic primary ψj;m,m̄ as

Φsu
j;m,m̄ = ψj;m,m̄ exp i

(

m

√

2

k
PL + m̄

√

2

k
PR

)

, (B.9)

leads to the following OPEs for the primaries ψj;m,m̄:

ψ(z)ψj;m,m̄(w) ∼ j −m√
k

ψj;m+1,m̄

(z − w)1+
2m
k

,

ψ†(z)ψj;m,m̄(w) ∼ j +m√
k

ψj;m−1,m̄

(z − w)1−
2m
k

.
(B.10)
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B.2 Non-compact parafermions and SL(2,R) current algebra

We start now from the SL(2,R) current algebra at level k ≥ 2

K3(z)K3(w) ∼ −k
2

1

(z − w)2
,

K3(z)K±(w) ∼ ±K±(w)

(z − w)
,

K+(z)K−(w) ∼ k

(z − w)2
− 2K3(w)

z − w

(B.11)

and decompose the currents as

K3 = −
√

k

2
∂P ,

K+ =
√
kπ exp

√

2

k
P ,

K− =
√
kπ† exp−

√

2

k
P ,

(B.12)

with P is a boson and π, π† are the fundamental non-compact parafermion fields.

The non-compact parafermionic algebra at level k contains an infinite set of objects πl
and π†l = π−l where l = 0, 1, 2, . . . and so that π0 = 1 and π1 = π. Their conformal dimen-

sions are ∆l = l + l2

k and their OPEs are the same as those of the compact parafermions

but with the central charge being c = 2(k+1)
k−2 and the structure constants Cl1,l2 changed to

Cl1,l2 =

(

Γ(k)Γ(k + l1 + l2)Γ(l1 + l2 + 1)

Γ(l1 + 1)Γ(l2 + 1)Γ(k + l1)Γ(k + l2)

) 1
2

. (B.13)

The OPEs we will need are

π(z)π(w) ∼ (z − w)
2
kπ2(w) ,

π(z)π†(w) ∼ (z − w)−2(1+ 1
k
) .

(B.14)

The SL(2,R) affine primaries Φsl
j;m,m̄ satisfy

K3(z)Φsl
j;m,m̄(w) =

m

z − w
Φsl
j;m,m̄ ,

K±(z)Φsl
j;m,m̄(w) =

m± (j + 1)

z − w
Φsl
j;m±1,m̄

(B.15)

and decomposing them as

Φsl
j;m,m̄ = πj;m,m̄ exp

(

m

√

2

k
PL + m̄

√

2

k
PR

)

, (B.16)

leads to the following OPEs for the parafermionic primaries πj;m,m̄:

π(z)πj;m,m̄(w) ∼ m+ (j + 1)√
k

πj;m+1,m̄

(z − w)1−
2m
k

,

π†(z)πj;m,m̄(w) ∼ m− (j + 1)√
k

πj;m−1,m̄

(z − w)1+
2m
k

.
(B.17)
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C. Superconformal N = 2 algebras

Using the decomposition of the N = 2 minimal model in terms of the bosonic parafermion

theory and a free scalar P , we can write an explicit realization of the N = 2 superconformal

algebra generators. They read:

G+su =

√

2(k − 2)

k
ψ† exp−i

√

k

k − 2
PL ,

G−su =

√

2(k − 2)

k
ψ exp +i

√

k

k − 2
PL ,

(C.1)

while the R-symmetry U(1) current is

Jsu = −i
√

k − 2

k
∂P . (C.2)

Notice that when the supersymmetric minimal model is at level k the bosonic parafermions

are at level k − 2.

Similarly, for the N = 2 Kazama-Suzuki model of SL(2,R)/U(1) at level k the su-

perconformal generators can be written in terms of the non-compact parafermions at level

k + 2 and of the free scalar Q as

G+sl =

√

2(k + 2)

k
π† exp i

√

k

k + 2
QL ,

G−sl =

√

2(k + 2)

k
π exp−i

√

k

k + 2
QL ,

(C.3)

while the R-symmetry U(1) current is

Jsl = i

√

k + 2

k
∂Q . (C.4)

It is straightforward to verify that these generators satisfy the N = 2 superconformal

algebra by using the OPEs of the parafermion theory provided in appendix B.

The superconformal generators of the total N = 2 algebra on SU(2)/U(1) ×
SL(2,R)/U(1) are

G+ = G+su +G+sl, G− = G−su +G−sl (C.5)

and the total U(1) R-current is

J = Jsu + Jsl. (C.6)

Analogous expressions hold for the antiholomorphic sector.

D. Coframes, spin connections and curvature two-forms

The full metric corresponding to small deformations of the circle is given in (4.36) which

for reference we copy here

ds2

k
= dρ2 + coth2 ρ dω2 + dθ2 + tan2 θ dϕ2 + 2ǫ

sinn−2 θ

coshn ρ
×
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×
[

cosn(ω − ϕ)
(

dθ2 − tan2 θ dϕ2
)

+ 2 sin n(ω − ϕ) tan θ dϕdθ
]

. (D.1)

The coframe we select is inspired by the form of the classical parafermions in the unper-

turbed case and it reads:

e1̂ =
√
k (dρ− i coth ρ dω) e−iω ,

e2̂ =
√
k (dρ+ i coth ρ dω) eiω ,

e3̂ =
√
k (dθ − i tan θ dϕ) e−iϕ + ǫ

e−ni(ω−ϕ) sinn−2 θ

coshn ρ

√
k (dθ + i tan θ dϕ) e−iϕ ,

e4̂ =
√
k (dθ + i tan θ dϕ) eiϕ + ǫ

eni(ω−ϕ) sinn−2 θ

coshn ρ

√
k (dθ − i tan θ dϕ) eiϕ .

(D.2)

We also define for convenience the unperturbed vielbeins in the compact directions

e3̂0 =
√
k (dθ − i tan θ dϕ) e−iϕ ,

e4̂0 =
√
k (dθ + i tan θ dϕ) eiϕ .

(D.3)

The connection one-form ωı̂̂ = Γı̂
k̂̂
ek̂ is defined as usual by

deı̂ + ωı̂̂ ∧ ê = 0 (D.4)

and the curvature two-form

Rı̂̂ = dω ı̂̂ + ωı̂
k̂
∧ ωk̂̂ =

1

2
Rı̂
̂k̂l̂
ek̂ ∧ el̂ . (D.5)

The non-vanishing components of the connection and curvature forms corresponding

to (D.2) read

√
kω1̂

1̂
= −

√
kω2̂

2̂
= −coth ρ

2

[

eiωe1̂ − e−iωe2̂
]

,
√
kω3̂

3̂
= −

√
kω4̂

4̂
=

tan θ

2

[

eiϕe3̂ − e−iϕe4̂
]

+
ǫ

2

tan θ sinn−2 θ

coshn ρ

[

−eni(ω−ϕ)+iϕ e3̂ + e−ni(ω−ϕ)−iϕ e4̂
]

,

√
kω1̂

4̂
= −

√
kω3̂

2̂
= ǫn

tanh ρ sinn−2 θ

coshn ρ
e−ni(ω−ϕ)−2iϕ−iω e4̂ ,

√
kω2̂

3̂
= −

√
kω4̂

1̂
= ǫn

tanh ρ sinn−2 θ

coshn ρ
eni(ω−ϕ)+2iϕ+iω e3̂

(D.6)
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and

kR1̂
1̂

= −kR2̂
2̂

= − 1

sinh2 ρ
e1̂ ∧ e2̂ ,

kR3̂
3̂

= −kR4̂
4̂

= − 1

cos2 θ
e3̂ ∧ e4̂

+ǫ n
tan θ sinn−2 θ tanh ρ

coshn ρ
eni(ω−ϕ)+iϕ+iω e1̂ ∧ e3̂

−ǫ ntan θ sinn−2 θ tanh ρ

coshn ρ
e−ni(ω−ϕ)−iϕ−iω e2̂ ∧ e4̂

+2ǫ
tan2 θ sinn−2 θ

coshn ρ
cosn(ω − ϕ) e3̂ ∧ e4̂ ,

kR1̂
4̂

= −kR3̂
2̂

= ǫ n

(

1 − n sinh2 ρ
)

sinn−2 θ

coshn+2 ρ
e−ni(ω−ϕ)−2iϕ−2iω e2̂ ∧ e4̂

+ǫ n
tan θ sinn−2 θ tanh ρ

coshn ρ
e−ni(ω−ϕ)−iϕ−iω e3̂ ∧ e4̂ ,

kR2̂
3̂

= −kR4̂
1̂

= ǫ n

(

1 − n sinh2 ρ
)

sinn−2 θ

coshn+2 ρ
eni(ω−ϕ)+2iϕ+2iω e1̂ ∧ e3̂

−ǫ ntan θ sinn−2 θ tanh ρ

coshn ρ
eni(ω−ϕ)+iϕ+iω e3̂ ∧ e4̂ .

(D.7)
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